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By a graph we mean a pair of sets G = (V, F) where E is an antireflexive (not
necessarily symmetric) binary relation on V. The elements of V' and E are called
vertices and edges respectively. By a graph morphism between Gy = (V4, E1) and

Gy = (Va, F2) we mean a mapping V; 1, V5 such that

fv) # f(w) = [vw € By & f(v)f(w) € Ey] (0.1)

for all v,w € V;. This kind of graph morphisms were explicitly defined by the
author [34]. However, implicitly this type of morphisms have a long history. They
arise from the work of Sabidussi [4] where the generalized lexicographic product
operation, a generalization of the composition operation introduced by Harary [3],
is defined. They have been re-invented later by several researchers (Hemminger
[11], Spinrad [16], M6hring [18]). The main source of inspiration was the devel-
oping of fast algorithms for transitive orientation of graphs by Ghouila-Houri [6],
Gilmore and Hoffman [7], Pnueli, Lempel and Even [12], Spinrad [19] (Part VI).
It turned out that the graph decomposition method, developed for the transitive
orientation, works excellently for many other combinatorial problems including
numerous NP-complete problems, such as maximum clique (Part VI) and iso-
morphy of two coloured graphs (Part VI). However, these techniques cannot be
used if the graph studied is simple, i.e. has no nontrivial decompositions. Unfor-
tunately, the simplicity is a property of almost all finite graphs as proved in Part
II. In [24],][25] and [26] Ehrenfeucht and Rozenberg represent a structure theory
of more general objects called 2-structures. The main objective of the current
thesis is to study what we can do with purely algebraic techniques in the field of
the structure theory of graphs.

In Part I we introduce the notation, basic definitions and results necessary to
understand the thesis.

In Part IT we study the basic properties of graph morphisms. We give a
characterization of finite simple graphs and prove that almost all finite undirected
graphs are simple.

In Part IIT the basic properties of the congruence lattice of a graph are dis-
cussed. The basic concept of algebraic structure theory — radical map — is defined
and the characterization of semisimple graphs is given in case of the so-called -
radical defined as the intersection of all co-atoms in the congruence lattice.
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In Part IV we give a complete characterization for those finite graphs whose
congurence lattice satisfies a fixed lattice identity. For example, congruence dis-
tributive (corresp. modular) graphs are characterized by the requirement that all
the components and their duals in the generalized lexicographic product should
not have more than two (corresp. three) connected components.

In Part V we describe a certain composition operation of lattices and de-
fine it as a lexicographic product due to the fact that it exactly represents the
congruence lattice of the generalized lexicographic product of graphs. We can
express ourselves more poetically saying that under certain conditions the oper-
ator Con preserves the lexicographic product operation. This property gives us
the complete classification of the congruence lattices of finite graphs.

In Part VI we show how the algebraic decomposition method may reduce the
complexity of NP-hard graph-related combinatorial problems.

In Part VII we show that the structure theory developed in Parts II-V may
have been significantly simplified by using the equivalence between the category
of graphs and the category of quasitrivial groupoids.

Congruence relations

Let G = (V, FE) be a graph and p an equivalence relation on the vertex set V. We
say that p is a congruence relation on G, if

zpa', ypy's ~(zpy) = [ry € £ & 2y’ € L]

for arbitrary vertices z,z’,y,y’ € V. It is easy to see, that the kernel Ker f of

a graph morphism G S Hisa congruence relation of G. And reversely, every
congruence relation p of G is a kernel of some morphism G — H. This is
true because there is a unique graph structure on the factor-set V/p such that
the natural projection V' —= V/p is morphism. This graph is called a factor
graph(quotient graph) of G by p and is denoted as G/ p.

It turns out that a congruence relation can be defined as an equivalence rela-
tion with equivalence classes satisfying certain conditions. This has been pointed
out by Hemminger [11] in the case of undirected graphs. Ehrenfeucht and Rozen-
berg [24] have proved similar results for directed graphs and more general objects
called 2-structures.

A subset M C V is called a module (by J.Spinrad [16]) of G = (V, E) if tu €
E = twée F and ut € E = wt € E for arbitrary u,w € M and t ¢ M. Modules
have many different names in literature. They are called clans in [24],[25],[26],
externally related subsets in [27] and blocks in [33]. It is easy to prove that an
equivalence relation p on the vertex set V is a congruence relation of GG if and
only if all the p-classes are modules of G.

In Part II we prove that the morphisms of graphs behave almost in the same
way as the morphisms of algebraic structures. Finally, In Part VII it turns out
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not to be just a coincidence.

Basic properties of Con G

In Part III we prove that the set Con GG of all congruence relations of a graph G
is a complete lattice. We prove also that if p¥ and p® denote the principal ideal
generated by p and its dual respectively, we have

p™ = Con G/p.
A suitable isomorphism can be defined as follows:

{ p© — ConG/p

o0,

where (v/p,w/p) € 0 & (v,w) € 0. We also prove that if G/p = (Vo, Ep) and
{G, }vev, is the partition corresponding to p then

pV = H (Con Gy, 7y),

UEV})

where the corresponding projections 7, can be defined as follows:

o0

\%
m:{ pV — Con G,

Gv?

Proofs are published by the author in [38].

Radical theory

By the radical J(G) of a graph G we mean the intersection of all co-atoms of its
congruence lattice Con GG. A graph G is said to be semisimple if J(G) = 0. It has
been proved [38] that a graph G = (V, F) is semisimple if and only if G is either
simple, complete, edgeless or linear, i.e. E is a linear ordering on V. Therefore,
if G = (V,F) is a finite semisimple graph then Con (G is isomorphic either to a
finite partition lattice IL, (n =|V'|) or to a direct power (II)* ({ + 1 =|V]).

A graph ¢ is said to be radical, if F(G) = 1. Only two finite graphs are radical
— the empty graph (0, 0) and singleton. It is proved in [38], that the infinite graph
(N, {(n,m) | n < m,m =1 (mod 2)}) is radical and its congruence lattice is
isomorphic to the ordinal w + 1.

The radical theory for graphs was first introduced by the author in [38]. All
the proofs are presented in Part III of the thesis.
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Figure 0.1: A graph G and its radical S(G).
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Lattice identities in Con G

The congruence lattices of graphs satisfying a given lattice identity are studied
in Part IV of the thesis. A complete characterization of all finite graphs with the
congruence lattice laying in a given lattice variety is presented.

Let [ be a lattice identity. We will find a characterization for all finite graphs G
such that Con G satisfies . To solve this problem, the §-radical defined in [38] as
the meet of all co-atoms in Con G is useful. If S(G) = 0, then either Con G = I,
or Con G = II%, where I1, is the lattice of all partitions of n = {0,...,n —1}. For
every J-semisimple graph (& define a positive integer n((G) such that n(G) = n
if G is a complete or edgeless graph with n vertices (i.e. if Con G = II,,) and
n(G) = 2 otherwise. Let V be a lattice variety such that L ¢ V for at least one
lattice L. There is a unique positive integer n such that IIy,...,II, € V, but
II,11 € V. Denote this n as (V).

We prove that if G/3(G) = {Gy,...,G,} and V is a lattice variety then
Con G lies in V if and only if n(G/ 3(G)) < n(V) and Con G; € V fore = 1,...,n.
It follows that for every lattice identity I there is an O(|V |?) algorithm that
determines whether [ holds in Con G, where V' is the vertex set of (.

The proofs were given by the author in [39] and are presented in Part IV of
the thesis.

Lexicographic product operation

For any family of graphs Gy = (W, Eo) and G, = (V,, E,), (v € V) their
generalized lexicographic product Go[(Gy)vev,] is a graph G with vertex set
V = {(v,w) | v € Vo,w € V,} and with edge set £ = {(v,w)(v',w’) | vv' €

Ey, or v = v" and ww' € F,}. The generalized lexicographic product was first

introduced in the work of Sabidussi [4] it is a generalization of the composition
operation introduced by Harary [3]. It has been re-invented later by several
researchers (Hemminger [11], Spinrad [16], Mohring [18]).

It can be easily verified that the partition of the vertex set V' into the compo-
nents GG,,v € Vj is a congruence partition and the corresponding factor-graph is
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Figure 0.2: An example of the generalized lexicographic product.

isomorphic to Go. Moreover, if p is a congruence relation of a graph G = (V, F),
Go = (Vo, Eo) = G/p is the corresponding factor-graph, G, (v € V5) are the
p-classes (viewed as induced subgraphs) then G = Go[(G)vev,]. Therefore, there
is a one-to-one correspondence between the decompositions of a graph into gen-
eralized lexicographic products and the congruence relations.

Accordingly, every finite graph can be assembled from simple graphs (i.e.
graphs that have no nontrivial congruence relations) with the help of the gen-
eralized lexicographic product operation. Such a decomposition is known as the
X-join decomposition 9], substitution decomposition [17], modular decomposition
[19] and prime-tree decomposition [24], [25], [26].

Lexicographic product of lattices

The radical 3(G) is a strongly neutral element of the lattice Con G, i.e. J(G)Vp =
I(G)Up for each p € Con (. Every strongly neutral element is a neutral element
(proved in [39], Part IV). Therefore, the mapping

is a lattice embedding. Let Vj be a set and Ly be a sublattice of the partition
lattice II(Vg) (the lattice of all partitions of V5). Let L,, (v € V5) be arbitrary lat-
tices. By the lexicographic product Lo[(Ly)vev,] we mean the following subdirect
product:

{(00, (00)vevy,) | Vo, 0w € Vo0, # 1, (v,w) € 09 = v=w}.

The lexicographic product of lattices is first introduced by the author in the

current thesis and is defined in Part V. All the proofs are presented in Parts
IV-V.
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Figure 0.3: An example of the lexicographic product of lattices.

Decomposition of Con G

Let GG be a finite graph. Let p be a strongly neutral congruence relation of G,
G/p = (Vo, Fo) and {G)}uey, is the corresponding partition. There is a lattice
embedding

Con G — Con G'/p X Il,ev, Con G,

Li{ o (5,(0 |a,)vevy))

It is proved in Part V that (o9, (0y)vev,)) lies in Im¢ if and only if

Yo,we Voo, #1, (Gy,G,) €09 = Gy =G, (0.2)

Thereby, if G = (V, E) is a graph and {G',},cq/3(q) is the partition correspond-
ing to the radical J(G) then the congruence lattice Con G is isomorphic to the
lexicographic product of the lattices Con G/ J(G) and (Con Gy)veq) 3(6)-

In Part V we also give a proof for the proposition that a lattice L is isomorphic
to the congruence lattice of a finite graph if and only if it can be assembled from
the lattices IT,, and (II,)" using the lexicographic product operation, assuming
that the constructions

() [(..., (Th)", )],

with £ > 1 are not allowed.

Graphs as algebraic structures

We prove in Part VII that the notion of a graph morphism has indeed an algebraic

nature. For each graph GG = (V, E) we can define a binary operation V xV — V
as follows:

w, ifvw e K _

v { v, ifvw ¢ FE. (0.3)

The corresponding groupoid (G, ) is quasitrivial, i.e. vw € {v,w},Vv,w. For
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N\

Figure 0.4: A graph and the corresponding groupoid.

every quasitrivial groupoid (G, -) we can define a binary relation £ such that the
condition (0.3) holds. Indeed, the relation £ can be defined as £ = {(v,w) | v #
w,v - w = w}. Quasitrivial groupoids and their relations with graphs have been
studied by Chech mathematicians ([14],[20],[33]).

It turns out that a mapping f between the vertex sets of two graphs is a graph
morphism if and only if it is a morphism of the corresponding groupoids, i.e. iff

flv-w) = f(v) - fw).

Thereby graphs can be viewed as algebras with a single binary operation.

Discussion

The current thesis describes an algebraic framework for certain kind of graph
decomposition referred to as modular decomposition having been proved to be
useful in various graph-related combinatorial problems. The main objective of
the thesis is to demonstrate that the ideas and methods developed during a
centuries-old history of abstract algebra may be extremely fruitful for developing
fast algorithms to find a solution of complex combinatorial problems, and more-
over, the results of combinatorics achieved that way, re-translated to the language
of algebra, are sometimes interesting for Algebra itself.

We show that the standard approach in algebraic structure theory — radical
maps — may be used also in graph theory. The structure theory, based on the
radical defined as the meet of all co-atoms in the congruence lattice, is shown
(in the thesis) to be equivalent to the modular decomposition theory developed
independently by numerous researchers. We point out also that the same de-
composition theory results from a "really standard” algebraic techniques when
defining graphs as quasitrivial groupoids first studied by Chech mathematicians.

The author has been studying practical applications of graphs for many years
starting with digital circuit simulation [31] and ending with the recent studies in
the field of digital time-stamping [40, 41] and believes that the algebraic structure
theory is a method much more universal we usually imagine. While the graph
theory serves as a general background for describing and formalizing complex
combinatorial problems from real life, the abstract algebra is a universal method
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for inventing hidden symmetries that may be a key to the solution of these ugly-

looking problem:s.

Publications

1. A.Buldas, “Comparability graphs and the structure of finite graphs.” Proc.
Estonian Acad. Sci. Phys. Math., 2/3, 1996, 45, 117-127.

2. A.Buldas, “Congruence lattice of a graph.” Proc. Estonian Acad. Sci.
Phys. Math., 1997, 46, 3, 155-170.

3. A.Buldas, “Graphs and lattice varieties,” Proc. Estonian Acad. Sci. Phys.
Math., 1998, 47, 2, 100-1009.

4. A.Buldas, P.Laud, H.Lipmaa, J.Villemson, “Time-stamping with binary
linking schemes,” Advances in Cryptology — CRYPTO’98, (LNCS 1462),

486501, 1998.

5. A.Buldas, P.Laud, “New linking schemes for digital time-stamping,” Proc.
ICISC’98, Seoul, Korea, 1998, 3—13.



The author expresses his thanks to the advisor prof. Leo Vohandu for stating the
problem, to prof. Kalle Kaarli, to prof. Ulrich Knauer, to prof. Ellen Redi, to
prof. Vello Kukk for their helpful and encouraging remarks, to dr. Ulo Jaaksoo,
to prof. Jaan Penjam and dr. Uno Kaljulaid for the support.

17



18

CONTENTS



19






1.1. SETS 21

1.1 Sets

We use the symbol A C B when A is a subset of B, i.e. if a € A always implies
a € B. The symbol A C B means the proper inclusion, i.e. A C B but A # B.
We use set theoretic operations AU B and AN B in the conventional sense. We
use both symbols A\ B and A — B for the set-theoretic difference, i.e. a € A\B
iff a € Aand a ¢ B.

For any set A of sets the union of A is defined as the set

UAd:={a|dA:a€ A A}.
If A in nonempty then the intersection of A is defined as the set
NA:={a |VAE A:a € A}.

Let V be a set. We say that V' is a direct union of nonempty subsets V;,..., Vj

and write
V=WIIVIl.-1IV
fV=VuU..UV,and V,NV; =0 for every i # j. The set # = {V4,...,V,} is

said to be a partition of V. In a more general case, if # has an infinite number of
elements, i.e. 7 = {V,},c; we will use the notation

v =1TVv.

el

. By the direct product of sets Vi,...,V, we mean the set of k-tuples
Vi x oo x Viei={{vg, e, 0p) | v1 € V1, o, v € Vi)

Sometimes we need direct products with infinite sequence of sets (V,),e; when [
may be tought about as an ordinal number. By a direct product of sets V, we
mean the set of infinite sequences (choice functions)

HK ={{v,)er |Vee Tl v, €V}

el

The Axiom of Choice (see [13]) says that for every sequence (V,),c; of nonempty
sets there exists a choice function. Therefore, direct product of nonempty sets is
nonempty.
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1.2 Relations

Let V be a set. By a relation with arity k on V we mean an arbitrary subset
k

——N—
E CVF =V x..xV. Relations with arity k& = 2 are called binary relations.
Relations with arity £ = 3 are called ternary relations. It E is a binary relation
then instead of (u,v) € E we sometimes use a shorter notation v £ v. The
relation

1V = {<’U,’U> | RS V}

is referred to as identity relation on V.

The relation E=!' = {(u,v) | (v,u) € E} is called the inverse of E. The
relation £ = (V x V)\FE is called the complement of E.

A binary relation FE is said to be symmetricif it coincides with its own inverse,
ie. if E = E~'. A binary relation ¥ on V is said to be antireflezive if EN1ly = ()
and reflexive if EN1y = 1y.

A binary relation £ on V is said to be antisymmetric if EN E7 C 1y, i.e.
(u,v),(v,u) € E always implies u = v.

Let £ and F' be two binary relations on V. By the composition E o F' we
mean a binary relation

EoF :={{u,w) | Fv eV (uv) € E (v,w) € F}.

A binary relation E is said to be transitive if Eo E C E, ie. (u,v),(v,w) € E
always implies (u, w) € F.

By a restriction of a binary relation F into a subset V/ C V we mean the
binary relation

E |V’:: EN (V/ X V/)

1.3 Graphs

A pair G = (V, E) is called a graphif E is a binary relation on V. The elements of
V and E are called vertices and edges respectively. A graph G is called undirected
if £ is symmetric. Instead of (x,y) € E we sometimes use shorter notation
xy € E. An edge of the form (v,v) is called a self loop (or loop). We assume
that the graphs being argued about in the thesis are without self loops, i.e. we
assume that the relation F is antireflexive.

A graph G = (V, F) is said to be finite if its vertex set V is finite.

The graph G = (V, E) is said to be the complement graph of G = (V, E).

By a complete graph we mean a graph GG = (V, E) such that £ =V x V. By
an edgeless graph we mean a graph G = (V, E) such that £ C 1y.
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The set N_(v) = {{v,u) € E'| u € V} is called a left neighborhood of v; and
dually, the set N_.(v) = {{u,v) € E | u € V} is called a right nezghborhood of

v. For an undirected gra ph the left and right neighborhood coincide and we use

the notation N(v) := N_(v) = N_(v).

1.4 Subgraphs and modules

We say that G' = (V', E') is a subgraph of G = (V,E) if V! C V and E' C
En (V' xV'). By an induced subgraph of G we mean a subgraph G' = (V', E')
such that £/ = EN (V' x V'). In most cases when speaking about the subgraphs
we inherently assume they are induced subgraphs.

A complete induced subgraph C of a graph G is called a clique of G.

A pair (V4,V3) is called a dicliqgue of G if Vi and V, are subsets of V' and
v1vy € F for every vy € Vi, vy € V5 and vy # vs.

Let G = (V, E) be an arbitrary graph. We say that the set of vertices M C V
is a module of G (by Jeremy Spinrad) if for all z,y € M and z ¢ M

(zze E=yz€eFE), (20 € E=zy € k).

Let G = (V, E) be an undirected graph and v € V be a vertex. By the connected
component of v we mean a induced subgraph consisting of all vertices u such that
there is a finite sequence of vertices

U = Vg, U1, 02..., Uy = VU,

such that vgvgs € F for every k < n. A graph G = (V, E) is said to be connected
if the connected component of a vertex v € V coincides with the whole graph. A
graph G is said to be complement-connected if G is connected.

1.5 Partial orderings

Let V be a set and R be a binary relation on V. We say that R is a partial
ordering on V, if R is antisymmetric and transitive. A partial ordering £ on V
is said to be linear ordering if EU E~! 2O (V x V)\1ly, i.e. if {{u,v),(v,u)} € E
always implies u = v.

A pair (V, E) is said to be a partially ordered set (or a poset) if F is a partial
ordering on V. If E is a linear ordering on V, the pair (V, F) is a linearly ordered
set. A graph G = (V| F) is said to be linear if F is a linear ordering on V.

Let P = (V, <) be a partially ordered set and A C V be an arbitrary subset.
An element £ € V is said to be a lower bound of A if £ < a for every a € A.
Dually, u € V is said to be an upper bound of A if a < u for every a € A. We
denote by AV the set of all lower bounds of A and dually, by A the set of all
upper bounds of A. If A = {a} then the we omit the brackets {} and use the
notations aV and a®.
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1.6 Lattices

Let P = (V,E) be a poset and A C V. If there is a greatest element in AV, we
say that it is the greatest lower bound or infimum of A and is denoted as inf A.
Dually if there is a least element in A%, it is referred to as the least upper bound
or supremum of A and will be denoted as sup A. Therefore,

i=infA = i€ AV, Vae AV :a <1
s€ A% Vae A® 1 s < a.

s=supA

A poset L = (V, <) is called a lattice if inf{a, b} and sup{a,b} exist for all
a,b € V. Sometimes we use alternative symbols for supremum and infimum:

aANb = inf{a,b}
aVb := sup{a,b}.

A lattice is said to be complete if inf A and sup A exist for all ) # A C V.
When speaking about lattices we assume that the corresponding partial or-
dering < is reflexive. By a chain of a lattice (I, <) we mean a subset C' C L
such that the restriction <|¢ is a linear ordering on C. A chain C is said to be
mazximal if for any chain D the inclusion C C D C L implies C' = D.
We say that a finite lattice L satisfies Jordan-Dedekind chain condition if all
the maximal chains have the same lenght.

1.7 Equivalence relations and partitions

Let V be a set. A binary relation £ on V is called an equivalence relation if it is
reflexive, symmetric and transitive. If £ is an equivalence relation and (u,v) € F
then we use alternative notation u = v (F). The set u/E = {v € V | (u,v) € F}
is called an equivalence class of E or simply, an FE-class 1t is well known fact
that equivalence relations on V' are in one-to-one correspondence with partitions
of V. Namely, if £ is an equivalence relation on V., the set of all E-classes
n(E) = {v/E | v € V} is a partition of V; and inversely, if P = {V,},¢s is a
partition, the set of pairs e(P) = {{u,v) | 3¢ € [ : u,v € V,} is an equivalence
relation. Moreover, 7(e(P)) = P and e(x(F)) = E. The set of all equivalence
classes of E is called a factor set and is denoted by V/E.

The set II(V) of all equivalence relations on V' is partially ordered by the
inclusion relation C. Moreover, this set is a complete lattice in which inf A = NA
for every subset A C II(V). If V = {1,...,n} then the partition lattice of V' will
be denoted as II,,. An overview about the partition lattices is given in [30].



1.8. LATTICES AS ALGEBRAS 25

1.8 Lattices as algebras

Let (L, <) be a lattice. Because of the equivalences
u<v =uVv=v=uAv=u
a lattice may be defined as an algebraic structure (L;V,A) such that:

e V and A are associative, commutative and idempotent;
e uV(uAv)=u=uA(uVwv).

An equivalence relation ® on L is called a congruence relation of L if (u,u’), (v,v') €
O implies (u Vv, u' V'), (uAv,u'Av') € O. It is well known that the set Con L of

congruence relations of a lattice is itself a lattice. A lattice L is said to be simple

if it has no nontrivial congruence relations. For example, the partition lattices

II(V) are simple (see [15]). A factor-set L/© be a congruence relation O is itself

a lattice. It is called a factor lattice of L. Let (L,),er be a sequence of lattices.

By the direct product

L

el

of the lattices L, we mean an algebra (L;V,A) such that L is a direct product of
sets L, and the operations V and wedge are defined as follows:

<uL>LEI \ <'UL>L€I = <uo \ 'UL>L€I

<uL>LEI A <‘UL>LEI = <uo A ‘UL>LEI'
A mapping L ™ L,, such that «,({u,),cs) = u, is called a natural projection. We
say that a lattice L' is a subdirect product of lattices (L,),es if L is a subalgebra
of the direct product [],¢; L, and =,(L") = L, for every ¢« € 1. A lattice is said

to be subdirectly irreducible if it cannot be represented in a nontrivial way as a
subdirect product. For example, a simple lattice is subdirectly irreducible.

1.8.1 Lattice varieties

By a lattice identity we mean an identity u(z,y,z,...) = v(z,y,z,...), where u
and v are expressions formed using the variable letters x, y, z, ... and the symbols
V and A of the lattice operations (i.e. the supremum and infimum respectively).
A lattice L is said to be distributive if the following identities hold:

tV(yANz) = (zVy) A(zVz)
tA(yVz) = (zAy)V(zAz).

For example, the congruence lattice of a lattice is distributive. A lattice L is said
to be modular if it satisfies the shearing identity

tA(yVz)=zA((yA(zVz))Vz).
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A class V of lattices is said to be a lattice variety if there is a set of identities 7
such that L € V if and only if all the identities of Z hold in L. If K is a class of
lattices we denote by Var(K) the smallest variety containing K.

It has been proved by B.Jénsson (consequence of Jénsson lemma [10]) that if
K is finite set of finite lattices and L is a subdirectly irreducible lattice in Var(K)
then there is a lattice K € L, sublattice S C K and a congruence relation
© € Con S such that L = 5/0.

For example, as II,, is simple it is also a subdirectly irreducible. It follows
from the Jénsson lemma that I, & Var({II,_;}) because otherwise there should
exist a sublattice S C IlI,_; and a congruence relation ® € Con S such that

I1, = S/O and therefore,

A contradiction, because obviously |II, |>|II,_1|. Hence there exists a lattice
identity that holds in II,_; but not in II,.
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In 1982 J.Spinrad [16] defined modules as subgraphs with certain properties and
discovered that graphs can be canonically decomposed using the structure of
modules. We show that the technique he used leads us to a new concept of a
graph morphism which is a generalization of strong homomorphisms. We give
a characterization of simple undirected graphs and prove that almost all finite
undirected graphs are simple.

2.1 Graph morphisms

Let G4 = (Vi, F1) and Gy = (Va, E3) be an arbitrary pair of graphs. We say that

a mapping V; S, V3 is a graph morphism if

f(@) # [(y) = [zy € Ex & f(2)f(y) € Ea]. (2.1)

for all z,y € V;i. For emphasizing that f is a graph morphism we sometimes write
Gy -1 G

For example, consider the mappings f, ¢ and h presented in Figure 2.5. Ob-
viously f is not a morphism because (1',3") € E’' but (1,3) € E; ¢ is not a
morphism for the same reason; h is a morphism.

h

==y

S g 1

1 — 12 1 47 2

2 4>I 2 —— o 27 3
37

3 _—
Figure 2.5: Mapping h is a morphism but f and g are not.

That kind of morphisms were introduced by the author [34]. It is easy to verify
that with respect to these morphisms one gets the structure of a category. In other
words, the identity mapping ' G 19, G is always a morphism, the composition
G4 ELA (73 of two morphisms (1 1, Gy and Gy -2 G5 is a morphism as well.
We say that the morphism f is a monomorphism if f is injective and that f is
an epimorphism if f is surjective. This is correct from the viewpoint of Category

1Tt coincides with the notion of identity relation.
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Theory. It is easy to see that the category of graphs is balanced with respect to

graph morphisms.
Let G = (V, E) be a graph and p an equivalence relation on the vertex set V.

We say that p is congruence relation on G, if
zpa', ypy's ~(zpy) = [ry € £ & 2y’ € L]

for arbitrary vertices x,a’,y,y" € V. For example, all the equivalence relations
presented in Figure 2.6 are not congruence relations. Inversely, all the relations

o B gl )
Figure 2.6: These equivalence relations are not congruence relations.

in Figure 2.7 are congruence relations.

Figure 2.7: Examples of congruence relations.

It is easy to see, that the kernel Ker f of a graph morphism ¢ L Hisa
congruence relation of (G. And reversely, every congruence relation p of GG is a
kernel of some morphism G — H. This is true because there is a unique graph
structure on the factor-set V/p such that the natural projection V - V/p is
morphism. This graph is called a factor graph(quotient graph) of G by p and is
denoted as G/ p.
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Theorem 1 Let (A, E4), (B, Eg) and (C, Ec) be graphs, A I, morphism,
A - B an epimorphism and Kerg C Ker f. Then there exists a unique mor-

phism B s C which makes the following diagram commutative:

A%T‘J

dl

B ", ¢.

(2.2)

If Kerg = Ker f then h is a monomorphism.

Proof. =~ As ¢ is onto there exists exactly one mapping h making the diagram
(2.2) commutative. Let us show that A is a graph morphism. Let by,b, € B be
vertices of B such that h(by) # h(bz). Because of the surjectivity of ¢ there exist
ar,az € A such that g(a;) = by and g(az) = by and therefore f(ay) # f(aq) and
g(a1) # g(az). As f and g are morphisms, the following propositions

aay € By & f(a1)f(az) € Ec
aay € By & g(a1)g(a2) € bp

are valid and thus the proposition b1by € Eg < h(by)h(bs) € E¢ is valid as well.
Indeed, h(b1) = f(a1) and h(by) = f(az) because of the commutativity of the
diagram (2.2). Thereby h is a graph morphism.

If Ker g = Ker f, then h is injective and therefore A is monomorphism. O

An important consequence of Theorem 1 is that if A J. Bisa morphism
then there exists a morphism A which makes the following diagram commutative

A - B
wl L
A/ Ker f LN Im f

where 7 and ¢ are the natural projection and the natural injection respectively.
It is easy to see that if one of the following three diagrams

13

G —— G/Ker f Imf —— G

i1 T T
f f f
gfﬂ G —— G/Ker f Imf —— G

13

is commutative, then the other two diagrams are also commutative. If f is
an endomorphism and makes these diagrams commutative, f is said to be an
idempotent.

Theorem 2 For every morphism G —— H there is an idempotent G L. G such
that Ker f = Kerg.
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Proof. Let G = (V, FE) be an arbitrary graph, V/Kerg £,V a choice function
and V - V/Ker g the natural projection. Let

fi=¢om.

Since ¢ is injective, Ker f = Ker g and it is clear that # 0 ¢ = 1. Therefore we get

fof =

It remains to show that f is a graph morphism. Let z and y be nodes of G
such that f(z) # f(y). Since Ker f = Kerw, we get also n(z) # #(y) and
7(f(x)) # n(f(y)) because of the injectivity of f. And finally

where E is the edge set of G/ Ker f. O

The most important consequence of Theorem 2 is that every congruence rela-
tion of GG is the kernel of a suitably chosen endomorphism of G and every factor-
graph of GG can be embedded into GG. Roughly speaking, every factor-graph is also
a subgraph. Indeed, if we have an epimorphism G <2 H then there exists an
endomorphism ¢ L, G such that Ker f = Kerg and by Theorem 1 there exists

a monomorphism H ", @@ which makes the following diagram commutative:
f
G — @
|

H —
h

2.2 An induction principle

We give now a very powerful tool for proving propositions about all finite graphs.
We say that a property A is inductive if for every graph G and congruence
partition G/p = {G, ..., G,} the following implication holds

A(GL), A(Ga), oy A(Gy), A(G/p) = A(G).

A property A is said to be hereditary if A(G) = A(H) whenever there is a
monomorphism H — G and dually, A is co-hereditary property of graphs if
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A(G) = A(H) whenever there is an epimorphism G — H. It follows from
Theorem 2 that every hereditary property of graphs is co-hereditary. It is clear
that if every simple graph has an inductive property A, then all (finite) graphs
have this property. If A is both inductive and hereditary then obviously

and therefore we can prove the following lemma by induction on the size of G.

Lemma 1 If properties A,B are equivalent for prime graphs and are both induc-
tive and hereditary then they are equivalent for all graphs.

2.3 Modules and morphisms

We prove that the modules of a graph G are closely related with the morphisms
from GG to other graphs. It turns out that the modules of a graph G are exactly
the congruence classes of G.

Theorem 3 An induced subgraph M of G = (V, E) is a module iff there exists a

congruence relation p of G such that M is a p-class.

Proof. Let M be a module. We define the following equivalence relation

p={le.y) | (@=y) or (¢ €M, ye M) (2.3)

It is clear that M is a p-class. It remains to show that p is a congruence relation
of G. Let us assume that zpa’, ypy' and —(xzpy). It follows now that —(z'py’)
because of the transitivity of p.

If x = 2’ and y = 3’ then the statement of the theorem holds trivially. Assume
now that x # 2’. It follows from (2.3) that x, 2’ € M. Since =(xzpy) and —=(z'py’),
it follows that y,y’ € M and, since ypy’, we get finally y = y’. The following
implications

zye B = 2y ekl

2y e B = wzy€ek,
are true because M is a module and this means that p is a congruence relation.
Let M C V be a subgraph such that there exists a congruence relation p of

(G such that M is an equivalence class of p. Let x,y € M and z ¢ M. Since p is
an equivalence relation, we get xpy, zpz and =(xpz) and therefore

rzeEll=yzek

because p is a congruence relation. The proof of zx € E = zy € E is similar and
therefore M is a module. O

It is also easy to prove that an equivalence relation p on the vertex set V is a
congruence relation of GG if and only if all the p-classes are modules of G.
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2.4 Comparison with strong homomorphisms

Let Gi = (V4, E1) and G5 = (Va, E3) be graphs. A mapping V4 J, V, is said to

be a homomorphism if
(u,v) € By = (f(u), f(v)) € E2.

A homomorphism is called a strong homomorphism if also the opposite implica-
tion holds, i.e. if

(u,v) € By < (f(u), f(v)) € Es.

Strong homomorphisms were introduced in 1958 by K. Culik [2]. The key infor-
mation about strong homomorphisms are given by the following lemma

Lemma 2 For any graph G = (V, E) and a pair of vertices u,v there exists a

graph H and a strong homomorphism G L H such that f(u) = f(v) if and only
if N (u) = N(v) and N_(u) = N_(v).

The proof (for undirected graphs) is given in [22]. However for the morphisms
in the sense of (2.1) there exist no ”local” characterizations. Moreover, for each
graph GG there is a morphism (2.1) to the singleton graph. Thereby, in the cat-
egory of graphs in the sense of (2.1) the singleton graphs are exactly the null
objects ? of the category. However, neither the category of homomorphisms nor
the category of strong homomorphisms has null-objects.

The graphs G for which the semigroup SEnd(G) of strong endomorphisms
is equal to the automorphism group Aut(() are said to be S-unretractive [21].
Small S-unretractive graphs are classified by Ulrich Knauer [23]. However, the
monoid End(G) of graph endomorhisms in the sense of 2.1 is almost never equal to
Aut(G), except if G is a singleton. Indeed, for every vertex v € V' the mapping

G 2% @ such that O,(u) = v is always an endomorphism. It is easy to see
that End(G) = Aut(G) U {O, },ev if and only if G has no nontrivial congruence
relations, i.e. if G is simple.

Figure 2.8: An S-unretractive graph which is not simple.

2An object O is said to be null-object if for every object A there is a unique morphism

A—O
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Each simple graph is S-unretractive because each strong homomorphism is a
graph morphism in the sense of (2.1). The opposite is not true. For example the
graph in the Figure 2.8 is S-unretractive but not simple, because the partition
{{a, b}, {c}} represents a congruence relation. The mapping f(a) = f(b) = a and
f(¢) = ¢ is a morphism in the sense of (2.1).

2.5 Strongly connected graphs

Let G = (V, E) be an undirected graph. We define relations K; and K_ in the
edge set E as follows

Ky = {{ay,zy) e ExXE|zz¢ E},

K_ = {{zy,at)e ExE |yt ¢ E}.

Let I' = Ky U K_. In other words, the relation I' consists of edge-pairs of two
different types as shown in the figure below.

y=1 T =2z
;1:/.\.2 y/\t
L
K K_

Relations K, ja K_ are both reflexive and symmetric. Therefore the transitive
closure of I' is an equivalence relation on the edge set F. The corresponding
equivalence classes are called I'-classes. It is clear that two edges e, ¢’ belong to
the same ['-class iff there is a chain of edges

!
€ = €g,€1,...,€ = €

such that (e;,e;41) € I'. Edges e, ..., e, can be chosen in such a way that ¢ is odd
and (e;,e;41) € K4 iff ¢ is even. Roughly, we have a chain

ce=e Ky et K_ey...epa K_ey1 Ky eg=¢.

We write e = ¢/(T') if the edges e and ¢’ belong to the same I'-class. We say that
the graph (G is strongly connected if it is connected and there is a I'-class F', such
that ¥ = FU F~'. If E' C F is an arbitrary subset of £ then the set of vertices

V(E") ={z | Jy(zy € £ or yx € E')}

is called the vertex part of E’. And similarly, if V/ C V is an arbitrary subset of
V then the set of edges

EV')={ay|z,ye V', zy € £}
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Figure 2.9: A connected graph that is not strongly connected

is called the edge part of V'. Graph G is called I'-connected if there is a I'-class F
such that £ = V(F'). It is obvious that for every I'-class F' the graphs (V(F), F')
and (V(F), E(V(F))) are connected.

A connected graph may not be strongly connected. Consider the graph G in
the Figure 2.9. If we divide the vertex set £ of G into I'-classes, we reach to a

partition {FEo, F1, Eq, E3} such that

Ey = {ab,cb,db}
Ey = {ba,bc,bd}
Ey, = {cdd}
Es = {dc}

Obviously this graph is connected but not strongly connected because there is no
I'-class F' such that F' U F~! = E. For example the I'-klass Ej is not a suitable
candidate for F because E;' = By and Eq U Ey # E. Indeed cd ¢ Fy U Ey.

All complete graphs are connected but obviously not strongly connected. A
good example is also a graph (octaedron) in the Figure 6.17.

2.6 Simple graphs

A graph G = (V, E) is called simple (or prime) if it has no nontrivial congruence
relations. Equivalently, the graph G is simple if the only non-empty modules are
(7 itself and the singleton subgraphs of G.

Theorem 4 There exists no partition £ = E,. 1] E}, such that the graphs G, =
(V,E,) and G, = (V, Ey) are both symmetric (non-directed), I'-connected and
e, Z (1) for arbitrary e, € E, and e, € Fj.

Proof. = Suppose there exists such a partition. We can assume that F, is a
I-class. 2 From E, C E, and E, C E, it follows that the graphs G, and G,
are complement-connected. Let us call the elements (edges) of F, red and the
elements of £} blue.

3By definition of the I'-connectivity there is a I-class E. C E, such that V(E.) = V. Now
taking £} :=V — E] D Ej we get a partition £ = E. [ E} with desired property.
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For every vertex v € V there is a following partition of the vertex set V'

V={o}[TR T B, IT M.

where R, = {w | vw € E.} is the set of all red neighbours of v, B, = {w | vw €
Ey} is the set of all blue neighbours of v and N, = {w | vw € FE} is the set of
all non-neighbours of v. The sets R,, B, are nonempty because (G, and G} are
connected.

It is clear that the pair (B,, R,) is a diclique because if + € B,, y € R, ja
xy € E then va = vy(I') which is a contradiction.

Notice that if x € B,, y € N, and 2y € E then the edge zy is blue because
xzv = zy(l'). Thereby, every edge between B, and N, is blue and similarly, every
edge between R, and N, is red.

Now we show that there are only blue edges in the graph (B,, F(B,)). Indeed,
if there is a red edge ¢’ € FE(B,) then for every red edge e not in E(B,) (there
is at least one such edge) e = €/(I') and therefore there exist vertices z,y € B,
and z € B, such that zy € F,, zy € E, and zz ¢ E. This is correct because F,
is a [-class. The vertex z is not in N,, otherwise there would be a red edge zy
between B, and N,. Also z # v because zy € E and by definition vy € E. So
we can conclude that z € R, but then zz € F because (B,, R,) is diclique. A
contradiction. So, we can draw an important conclusion:

YoeV: E(B,) C F.

Let v,r,b € V be arbitrary nodes such that r € R, and b € B,. Then we know
that rb € F because (R,,B,) is diclique. The edge rb is not blue, otherwise
r € By and there is a red edge vr € E(By) C Ey. Therefore rb is red and we can
conclude that there are only red edges between R, and B,.

Hence, there are only red edges between R, and V — R, = {v}UB,UN,. But
if € R, then there is at least one y such that zy € E, (connectivity of ;) and
therefore y € R, and zy € E(R,). But the edge 2y cannot be in the same I'-class
with any edge e € E(V — R,), but we know that there are such edges (B, # 0).
A contradiction with the I'-connectivity of Gy. This proves the impossibility of
the partition. O

Theorem 5 If G = (V, E) is simple and E # ) then G is strongly connected.

Proof. Suppose G = (V, F) is prime and F C E is an arbitrary I'-class. Now
we will show that V(F') is module and therefore V(F) = V. Let z,y € V(F),
z ¢ V(F) ja xz € E. Graph (V(F), F) is connected and hence there is a a
sequence of vertices

T =20, L1,y Ty = Y

such that z; € V(F) and z;2,41 € F. We can prove now by induction that
yz € E. Indeed, gz = zz € E by the assumption and if z;z € F then z;,412z € £
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as well because otherwise we get that (x;2,41, z;2) € I' which is impossible because
z ¢ V(F). This implies yz € FE. The proof of the implication zx € £ = zy € £
is similar.

Thereby, V(F) is a module with at least two vertices and therefore V(F) =V
because of the simplicity of G. Let F, = FUF~'. Suppose F, = E—FE, # (. Let
F" C Ey be a I'-class containing an edge zy € F'. It follows from the primality
that V(F’) = V and therefore the graphs G, = (V, E,) and G}, = (V, E}) are both
symmetric, I'-connected and e, # e,(I') for arbitrary e, € F, and e, € Ey. This
is impossible by Theorem 4. Therefore, ¥ = F' U F~! and hence  is strongly
connected. O

Theorem 6 If G and its complement graph G are both strongly connected then
G is simple.

Proof. If ) # M # V is a module there is at least one vertex in V' — M.

We show that the subgraph (V — M, E(V — M)) is not edgeless. Indeed, if
it is edgeless then for every z € V — M there is an © € M such that zy € F
because of the connectivity of G. But that implies for every vertex y € M there
is an edge yz € E because M is a module. So, (M,V — M) must be a diclique
and so G is not connected. A contradiction. So, we may assume that there is at
least one edge in (V — M, E(V — M)).

Now we can prove that E(M) = (). Suppose E(M) is not empty. As G is
strongly connected then e = €/(I') for every e € E(M) and ¢ € E(V — M). So,
there must be z,y € M and v € M such that 2y € E, v € E and yv € E. But
it is impossible because M is a module. Therefore M is an edgeless subgraph of
G.

As M is a module of GG as well, we can prove similarly that M is an edgeless
subgraph of Gi. But this implies that M is a complete subgraph of . This means
that M is complete and edgeless at the same time. It is possible only if |[M|= 1.
Therefore GG is simple. O

These two theorems imply that a graph G = (V| E) is simple iff either [V|< 3
or G and G are both strongly connected.

2.7 Almost all graphs are simple

A finite undirected graph G = (V| E) is said to be standard if V = {1,2, ..., |V|}.
We say that almost all finite graphs have a property A if

. |Ga(n)]
1 —
e (Gn))

where G(n) is the set of all standard graphs with n vertices and G4(n) is the set
of all graphs with n vertices having the property A.
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Theorem 7 Almost all finite undirected graphs are simple.

Proof. Let G,(n) be the set of all simple standard graphs with n vertices and
Gs(n) be the set of all standard graphs G with at least one module M C G such
that |[M|= s. Therefore,

G160 = 3 16.()].

Let M be a fixed s-element subset of n = {0,...,n — 1}. It is easy to see that the
number of graphs G = (n, F), such that M is a module in G, is equal to

2ns . 903 L 90h (2.4)

n!

R (n—Fk)!

where CF := are the binomial coefficients. Indeed, there are 2% possibil-

a
=@
meI<| A
M
B

Figure 2.10: A graph with a module [M|= s and set A of vertices adjacent to M.

ities to choose a subgraph M and 20— independent possibilities to choose the
subgraph VA\M. If A is the subset of V\M consisting of all vertices a € V\M
such that (m,a) for some m € M (Figure 2.10). As M is a module, a should
be adjacent with all vertices in M. Hence there are 2"~° possible ways to choose
edges between M and V\M assuming M is a module. Therefore the number of
graphs with a module |M |= s is indeed equal to (2.4). We have the following
inequality

|gs(n)| < CZQ?%—SQC?.ZC%_S — CZQn—SQC%—s(n—s)
(8 90— (s-1(n=s)

From the equality |G(n)|= 2% it follows that

1G,(n)| _n_l P
o) =50
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where f(s) = 227°6=10("=9)  We will now study the properties of the function
f inside the intrerval [2,n — 1]. It turns out that f has a global maximum in 2.
Indeed, the function f is decreasing in [2,[(n — 1)/2]] because

n—s:s

s+ 1

whenever 2 < s < (n—1)/2. Therefore f(2) is a global maximumin [2, [(n—1)/2]].
But

fls +1)/1(s) 2 <1, (2.5)

fln—s)= T p(s 1) < fls 4 1)

whenever 2 < s < (n—1)/2. Therefore, f(2) is a global maximum if n is odd. If
n is even, we have to compare f(2) and f(n/2). From the inequality (2.5) we get

n4+2 n + 2
fnf2) = fn/2-1) <
n 4in
< f2),
because 2 < n/2—1 < (n—1)/2. Accordingly, f(2) = n(n —1)2=""1 is a global
maximum of f and therefore

f2)

S () S ne () < 5

As lim,, o, n?/2"71 = 0, we have lim,,_, ||ggp((:))|l =1.0
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A radical map in the class of all graphs (not necessarily finite or undirected) is
defined and a complete characterization of the corresponding semisimple graphs
is given. It is proved here that the congruence lattice of finite graph satisfies the
Jordan-Dedekind chain condition.

3.1 Introduction

We are studying the congruence lattice of a graph without any restrictions (finite-
ness or undirectedness). It is proved here that if p is an arbitrary congruence
relation of GG then the principal ideal pV is isomorphic to the direct product of
the congruence lattices of all p-classes and its dual p® is always isomorphic to
the congruence lattice of factor-graph GG/p. We define a radical map as a map-
ping (with certain properties) from the class of all graphs to the class of all sets.
We prove that taking the greatest lower bound of all co-atoms of the congru-
ence lattice defines a radical (the 3-radical). We will show that a graph G is
S-semisimple (J(G) = 0) if and only if at least one of the following conditions

holds.
e (7 is simple.
o (7 is edgeless.
e (7 is complete.
e (7 is linear.

Finally we prove that the congruence lattice of a finite graph satisfies the Jordan-
Dedekind chain condition.

3.2 Principal ideals in the congruence lattice
of a graph

Let Con GG denote the set of all congruence relations of graph GG. Note that Con G
is partially ordered with respect to the inclusion relation C.

Theorem 8 Con G is a complete lattice for every graph G = (V, F).

Proof. Let us prove at first that the intersection NA of every nonempty subset
A of Con (5 is a congruence relation of G. It is obvious that NA is an equivalence
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relation. Let (z,2'),{y,y") € NA and (z,y) ¢ NA. Consequently there is a
congruence relation p € A such that (z,y) € p. As p is a congruence relation it
follows from (x,z'), (y,y') € NA C p that

(z,y) € E (2’ y') € E.

Therefore, NA is a congruence relation. Note that NA is also the greatest lower
bound of A. It remains to prove that there is also the least upper bound for
every nonempty subset A C Con GG. Indeed, if A is nonempty then the set

A2 ={o|oc€ConG, Vp:pe A= pCo}

is nonempty because the universal congruence relation 1¢ = V x V belongs to
A%, And therefore N(A%) is a congruence relation and it is easy to verify that
it coincides with the least upper bound of A. O

Theorem 9 If G = (V, F) is a graph and p € Con GG then
p= = Con G/p.
A suitable isomorphism can be defined as follows:

{ p> — ConG/p

o0,
where (v/p,w/p) € 6 < (v,w) € 0.

Proof. Before giving a proof of the theorem let us prove the following lemma.
Lemma 1 If h is epimorphism then for every pair of morphisms gy, g2

Ker(g; o h) C Ker(gg 0 h) « Kerg; C Ker g3.

Proof. 1If Ker(g; 0 h) C Ker(gs 0 h) and (x,y) € Kerg; then g1(z) = ¢1(y). As
h is onto, there are 2’ and y’ such that h(z') = x and A(y’) = y. Consequently
g1(h(z")) = g1(h(2)) and therefore (2',y’) € Ker(g; o h). By the assumption
(2',y") € Ker(gz o h) and therefore ga(h(z')) = g2(h(2')) which is equivalent to
(x,y) € Ker ¢s.

If Kerg;y C Kergy and (2/,y") € Ker(gy o k) then gi(h(z")) = ¢1(h(z')) and
therefore gz (h(2')) = g2(h(z")) which is equivalent to (z',y’) € Ker(gz o k). This
completes the proof of the lemma. O

We know that every congruence relation of the quotient graph G/p is the
kernel of some morphism G/p % H. Let GG — (I/p be the natural projection.

We define a mapping Con G'/p S, p” as follows:

f:Kerg — Ker(g o ).
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f is well-defined because if G'/p 2 Hy and G/p 25 H, are two morphisms and
Ker g1 = Kerg; then by lemma 1 we get Ker(g; o 7) = Ker(g2 0 7). And more, it
follows from the lemma that f is injective and order-preserving.

It remains to prove that f is onto. Let 6 € Con G and p C 6. Then there is
a graph H and a morphism G <& H such that Kerg = 6. Therefore there is a

morphism G/p ", H such that hor = g and thus
6 =Kerg = Ker(hon) = f(Kerh).

It shows that f is indeed onto and consequently f is a lattice isomorphism. O

Theorem 10 [f G is a graph, p € Con GG is an arbitrary congruence relation and
Glp = {Gshyes then
p¥V =[] ConG;.
€T

Proof. Let G - @ (7 € J) be the natural injections. Define a mapping
Con G -2 [I;e7 Con G as follows:

¢: Ker f = {Ker(f 0 1)} e

Let p¥ — Con (G be a natural monomorphism.

Lemma 2 [If 01,09 € pV then

o1 C oy & (¢0)(o1) < (¢o)(02)

Proof. Let Ker fi = «(01) and Ker f; = «(02). If 01 C o3 then also Ker f; C
Ker f; because ¢ is a lattice embedding. Consequently Ker(f1 0¢;) C Ker(fz 0¢;)
for every j € J and thus ¢u(or) < de(oz).

If ¢u(o1) < ¢i(02) then by definition

Ker(fi10¢;) C Ker(fz0¢;) (3.1)

for every j € J. If (z,y) € «(o1) = Ker fi then (x,y) € p because of the
inequality ¢(o1) € p. Consequently there exists j € J such that z,y € G,
and therefore ¢;(z) = x and ¢;(y) = y. Now we get from fi(z) = fi(y) that
(x,y) € Ker(fi o¢;) and by inequality (3.1) (z,y) € Ker(fy o ¢;). Therefore
fa(x) = farj(2) = far;(y) = f2(y) and this means that (x,y) € Ker f,. Thus we
have proven the inequality ¢(o1) C ¢(02). As ¢ is a lattice embedding it follows
that o1 C 0y. O
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We now return to the proof of the theorem. It follows from the lemma that ¢
is injective and order preserving. It remains to show that ¢« is onto. Let {o;};e7
be an arbitrary element of [[;c 7 Con ;. Let

o=Jo;={(z,y) 3 €T : (2,y) € 0;}.
€T
We will show first that o is a congruence relation and o € (p]. It is obvious that
o is an equivalence relation. Let z,y, 2.y’ € V be arbitrary nodes of G, zoz’,
yoy' and =(xzoy). Consequently there are ¢ and j in 7 such that (z,z') € o, and
(y,y') € o, but (x,y) & oy, for all k € 7.
If : = 7 then o; = o; which implies

(z,y) e E & (2',y) € E (3.2)
because o; is a congruence relation on G;. If ¢ # j then =(xpy) and therefore
zp', ypy', ~(zpy),

because x, 2’ € G; € G/p and y,y’' € G; € G/p. As p is a congruence relation we
get (3.2). Therefore o € Con G.

It is clear that o C p because if (x,y) € o then there exists ¢ € J such that
(x,y) € ConG;. Thus z,y € G; and therefore (z,y) € p.

And finally, we show that for all o € (p] ¢iu(0) = {0;}je7. Let 0 = (o) =
Ker f. Then ¢u(o) = {Ker(fo¢;)}jes and it remains to show that Ker(fo¢;) = ;.

Indeed, if (z,y) € Ker(f o¢;) then z,y € Gj, ¢j(z) = z and ¢(y) = y.
Thereby (z,y) € Ker f = 0 and there exists k € J such that (z,y) € o and
thus (x,y) € Gi. Consequently j = k and therefore (z,y) € o;.

If (x,y) € o; then z,y € G; € G/p and (x,y) € Uiceg0; = 0 = Ker f.
Therefore (x,y) € Ker(f o¢;). O

3.3 Radical maps

Let § and G be the class of all sets and the class of all graphs respectively. Let
H C G be a subclass of G. A mapping H — S is called a radical map in H if
the following three conditions hold:

e 7(G) € ConCd
o f G,H € H and G S His epimorphism then
(z,y) € r(G) = (f(z), f(y)) € r(H)

e r(G/r(G)) =0.
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A graph G is said to be r-radical if r(G') = 1 and G is said to be r-semisimple
if 7(G) = 0. Here 0 and 1 denote trivial congruence relations. The following
theorem gives us an important example of a radical.

Theorem 11 Let ‘H be the class of all undirected graphs. Let G' be an arbitrary
graph in H and ¢(G) is an equivalence relation corresponding to the partition of G
into its mazimal connected components. Then the mapping H — S is a radical
in the class of all undirected graphs.

Proof. Let G = (V,E)and H = (V', F') be undirected graphs. It is obvious that

¢(G) € ConG. Let G L H be an epimorphism and (z,y) € ¢(G). Accordingly
x and y lie in the same maximal connected component of G and therefore there
must be a chain of vertices

T = Vg, ey Vg = Y

such that v;v,41 € E. As f is a morphism then for every component v; of the
chain

f(‘I) = f(’Uo),f(’Ul), ---;f('UZ) = f(y)
either there is an edge (f(v;), f(vigy1)) € E' or f(v;) = f(viy1). This means that
f(z) and f(y) lie in the same maximal connected component of H and therefore

(f(2), [(y)) € c(H).

As G/¢(@) is always edgeless then all the maximal connected components of

G//c(@) consist of single vertex. Therefore ¢(G/c(G)) = 0. O

It is easy to verify that a graph (G is r-radical if and only if it is connected and
G is r-semisimple if and only if it is edgeless. Let ¢(G) denote the partition of
(' into the maximal complement-connected components. It is easy to prove that
H —— S is a radical and G is ¢- radical [c — semisimple] iff G is complement-
connected [complete].

3.4 Spinrad’s congruence relation

It turns out that a congruence relation can be defined as an equivalence relation
with equivalence classes satisfying a certain condition. Namely, an equivalence
relation p on the vertex set V' is a congruence relation of GG if and only if all the
p-classes are modules of G.

This has been pointed out by Hemminger [11] in the case of undirected graphs.
Ehrenfeucht and Rozenberg [24] have proved similar results for directed graphs
and more general objects called 2-structures.

Modules have many different names in the literature. They are called clans
in [24],(25],[26], externally related subsets in [27] and blocks in [33].

We say that two sets overlap if they intersect and neither of them contains
the other. A decomposable set family F on a set V is a family of subsets of V
with the following properties:
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e V and its singleton subsets are members of F;

e Whenever X and Y are overlaping members of F, then X NY, X UY,
X — Y and XAY are also members of F, where A is the symmetric set
difference.

It is proved in [18] that

Theorem 12 The family of all modules of an undirected graph is a decomposable
set family.

Modular decomposition of a graph has been studied by several researchers in
many different areas. A nice overview is given by Mohring and Radermacher [17].
Spinrad [16] developed an O(n?) algorithm to find the modular decomposition
which has been used to develop fastest known algorithms for several combinatorial
problems ([19]). We prove that the modular decomposition is related with certain
radical map.

As we want to avoid the finiteness assumption we need to prove a more pow-
erful result about the union of an infinite family of overlaping modules.

Theorem 13 If M is a nonempty set of modules and "M # () then the union
UM is a module.

Proof. Let z,y € UM and z € V — UM. Accordingly there exists A, B € M
such that * € A and y € B. As the intersection is not empty, there exists

tenNM C An B. It follows now from theorem 12 that M = AU B is a module,
z,y € M and z € V — M. Statement of the theorem directly follows from the
definition of module. O

For every vertex x of G = (V, E) we have a set
M(x):={M |z e M+#YV, Mis amodule}
of all nontrivial modules containing the vertex z. Let M, = U M(x). It follows

from theorem 13 that M, is a module. Let § = {M, | = € V}. It is easy to
verify that if there is at least two vertices in (G, the following four conditions hold:

e SCP(V),
e 0 &8,
° Uz’EV M, =V,

L JMa:mMy #@jJMm:JMy-
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Thereby we can say that S is a partition of the vertex set V of G. Let us denote
the corresponding equivalence relation by s(G). * As every equivalence class of
s(() is a module, we can say that s(() is a congruence relation of . Let us call
it Spinrad’s congruence relation.

Theorem 14 [f GG has at least two vertices then s(G) is an upper bound (in
Con GG) of all congruence relations not equal to 1.

Proof. Let p # 1 is a congruence relation of GG and o = s(G). Let © € V be
an arbitrary vertex, K is a p-class (module) containing the vertex x and L is a
o-class (module) containing x. By definition of s(G) we have K C L. If (z,y) € p
then z,y € K and therefore x,y € L and thus (x,y) € 0. Accordingly p C o and
thereby o is an upper bound of all congruence relations different from 1. O

Lemma 3 If 6 # 1 is an upper bound of all congruence relations of G different
from 1 then 6 is a co-atom of Con (5.

Proof. If 6 C ¢ C 1 then o = 1 because otherwise ¢ C ¢ which leads us to the
contradiction 6 C 6. O

Corollary 1 For every graph G the Spinrad’s congruence relation s(G) is either
equal to 1 or it is a unique co-atom of the congruence lattice Con .

Lemma 4 If there are no co-atoms in Con G and GG L H s an eptmorphism
then there are no co-atoms in Con H.

Proof.  If there is a co-atom p in Con H then there is a co-atom in the dual
principal ideal (Ker f)A and consequently there is a co-atom in Con GG. Indeed,
the mapping Con H 2, (Ker f)A, Kerh — Ker(h o f) is a lattice isomorphism
and therefore ¢(p) is a co-atom of Con GG. O

Theorem 15 The mapping G — s(G) is a radical in the class of all graphs.

Proof. We know that s(() is a congruence relation and either s() is equal to
1 or s(G) is a co-atom of Con (G. Accordingly there is at most two elements in
Con(G/s(()) and therefore s(G/s(G)) = 0.

Let G —L» H be an epimorphism and (z,y) € s(G). If s(H) = 1 then it is clear
that (f(x), f(y)) € s(H). If s(G) = 1 then by lemma 4 we have s(H) = 1 and
therefore (f(x), f(y)) € s(H). Consequently, we can assume that neither s(G)

4If G is a singleton graph we take s(G) = 1.



20

nor s(H) is equal to 1. Therefore by the corollary 1 s(GG) and s(H) are unique
co-atoms in Con G and Con H respectively. Let H — H/s(H) be the natural
projection. As the mapping ¢: Kerh — Ker(h o f) (H Ly s a morphism)
is an isomorphism between Con H and (Ker f)A, the image Ker(w o f) of the
co-atom s(H) = Kerx is a co-atom as well and therefore Ker(w o f) = s(G). As

(x,y) € s(G), we have n(f(z)) = (f(y)) and (f(z), f(y)) € Kerm = s(H). O

3.5 Uniqueness of the simple quotient

Theorem 16 [f there is a co-atom p in Con G such that there is at least 3 vertices
in G/p then p is a unique co-atom of Con G and furthermore, p is the least upper
bound of all congruence relations different from 1.

Proof. Let G = (V,FE) and p € Con( is a co-atom such that |G/p|> 3. Let
us assume that there is a congruence relation ¢ not comparable with p. We will
obtain a contradiction. Note that there exists a o-class M and p-class G; such
that M NG; # 0 and G; € M. As M and G; are intersecting modules, their
union M U G; is a module by theorem 12. We define now the following sets of
modules:

M = {MUG, |G eGlp, GinM +0)
N = {Gg|Gg€G//), GgﬂM:@}.

As N M # 0 then by theorem 13 U M is a module. The set A/ is empty because
otherwise we have a partition of GG into the modules

G=UMIIII G/

GreN

and thus the corresponding equivalence relation p’ is a congruence relation such
that p C p C 1 (p # p'). This is impossible because p is a co-atom. So,
M NG, # 0 for every G; € G/p.

As G; € M, there is a vertex zg € G; — M. Let z,y € G — G; be arbitrary
vertices not in G — G; and z € (; is an arbitrary vertex in ;. Let y € G, € G/p,
x € G, € G/p, As M UG, is not empty for every j, there must be y' € M NG,
and 2’ € M NG,.
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G
Gz M
r| g /Gz
® ®
A ®
o o 20
yly ~
Gy

Now we get a chain of implications

rz€FE = wzzp€ FE (G;is amodule)
= 2'zg€ E (G, is a module)
= y'zo€ E (M is a module)
= yz € £ (G, is a module)
= yz € F (G;is a module)

showing that G — G; is a module. Therefore we have a congruence partition
G/p" ={G;,G—G;} and p C p" C 1. Accordingly p = p” but then there is olny
two p-classes. This is impossible because of the assumption |G/p|> 3. O

Theorem 17 Fvery two simple quotient graphs of a graph G are isomorphic.

Proof. Let GG/p be a simple graph. It follows from theorem 9 that p is a co-atom
of ConG. If |G/p|> 3 then by theorem 16 we have that p is a unique co-atom
and therefore G/p is a unique simple quotient of G.

Let |G/p|=|G/o|= 2. 1t is obvious that p and o are co-atoms of Con GG. Let
Glp={M' M — M'} and G/o = {M,G — M}. Without loss of generality we
may assume that M N M' # (. Leta € MNM'. Let z € G', y € G — &,
' € M and y' € G — M be arbitrary vertices. We will show that xy € E iff
z'y' € E (or xzy € E iff y'2’ € E) and therefore the factor-graphs G/p and G/o
are isomorphic.

M|G—-M

. L

[ S

ily
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Let us assume first that M’ U M # (. Consequently, G — (M’ N M) is a module
because (G — M')N (G- M) =G —- (M UM) # 0 and G— (M' N M) =
(G—M")U (G — M). But now

rye€E = aye E (M'isa module)
= ay € E (G—(M'NM)isamodule)
= 2y € E (M is a module).

fMUM=Gthen M— M =G—-M"and M'— M = G— M. Thereby y' € M,

y € M'" and we have a chain of implications

ry € E = yyeE (M isamodule)
= y'z' € E (M'is a module)

3.6 The &-radical

Let G be the class of all graphs and § be a class of all congruence relations of all
graphs. Let G S, Shbea mapping such that (G) = 1 if there are no co-atoms
in Con G and otherwise J(() is equal to the greatest lower bound of all co-atoms

in Con .

Theorem 18 A mapping G — (@) is a radical in the class of all graphs.

Proof. It is clear that 3(G) € Con G. 1t follows from theorem 9 that J(G/ S(G)) =
0.

Let G —5 H be an epimorphism and (f(z), f(y)) € I(H). Consequently
there is a co-atom Ker h € Con H (H Ly isa morphism) such that (f(z), f(y)) ¢
Ker h and thus (x,y) € Ker(ho f). We know that the mapping Ker h — Ker(ho f)

is an isomorphism between Con H and (Ker f)A and therefore Ker(ho f) is a co-
atom in Con G. Accordingly (x,y) € S(G) and thus ¥ is a radical. O

If G = (V, E)is alinearly ordered set and p € Con (7 is an equivalence relation.
p is called a cut of G if there are subgraphs Gg, G; such that G/p = {Go, G4}

and there is a vertex v € V such that for arbitrary vertex z € V
r€Gy& v EER.

It is clear that every cut of G is a congruence relation of ;. It is obvious that
if G is a linear ordering then all its cuts intersect to zero and therefore G is
J-semisimple. So, we can say that a proof of the following theorem is obvious.
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Theorem 19 [If G is either simple, edgeless, complete or linear then G is -
semisimple.

Furthermore, it turns out that also the inverse statement is true.

Theorem 20 A graph G is S-radical iff there are no co-atoms in Con G and G
is S-semistmple iff it satisfies at least one of the following conditions:

o (7 is simple,

G 1is edgeless,

G is complete,

o (7 is linear.

Proof. If there are no co-atoms in Con (G then by definition I(G) = 1, and if
3(G) = 1 then Con GG cannot have any co-atoms.

If one of the four conditions holds then G is &-semisimple by theorem 19.

Let us assume that (G) = 0. If there is a co-atom p € Con G such that
|GG/ p|> 3 then it follows from theorem 16 that p is a unique co-atom and therefore
0 = S(G) = p. Accordingly, |Con G|= 2 and thus G is simple.

If all the simple quotients of G have two vertices then by theorem 17 they are
all isomorphic. There are 3 different graphs having exactly two vertices. Here
they are. If p is a co-atom and G/p = O, then all the simple quotients of G are

O, K, Ay
°

Figure 3.11: Graphs with two vertices.

isomorphic to Oz. Let z,y € V and = # y. As J(G) = 0 there is a co-atom p
such that (z,y) & p ard therefore  and y lie in different p-classes. As G/p = O,
we have zy € E. As the vertices z, y were chosen randomly, we can say that G is
edgeless. Similarly, we can prove that if there is a co-atom p € Con GG such that
G/p = K, then (G is complete.

If there is a co-atom p’ € Con G such that Con G/p’ = Ay and z,y € V are are
different vertices of GG then by the condition J((G) = 0 there exists a co-atom p
such that (z,y) &€ p. As G/p = A, then by theorem 17 either zy € F and yx ¢ £
orzy ¢ E and yx € E. So, we have proved that there is a directed edge between
arbitrary pair of vertices. It remains to prove that there are no 3-element cycles
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in G. Let zyz be a cycle (zy,yz,zx € E and zz, zy,yx ¢ E). If p is an arbitrary
co atom then either x = y = z(p) or two of the vertices are equivalent by p. All
the free vertices cannot lie in different p-classes, because there are exactly two
p-classes. If = y(p) and z # x(p) then there is a p-class M such that z,y € M
and z ¢ M. This is impossible because M is a module. Accordingly, for every
co-atom p and for arbitrary vertices x,y,z we have @ = y = z(p) which is a
contradiction with the condition ¥(G) = 0. O

The S-radical may be used to recursively decompose a graph into a tree-
like structure in the following way. Suppose we have a finite graph G = (V| F)
such that {G4,...,G,} is the partition corresponding to the congruence I(G).
For decomposing GG we take the factor graph G/ ¥(G) and and add outgoing
directed edges to each vertex of G/ (). Then we found the decompositions of
the components (G, ..., G, and "glue” them to the corresponding directed edges.
Thereby, the "vertices” of the decomposition tree are -semisimple graphs and by
Theorem 20 the decomposition obtaine coincides with the modular decomposition

[16, 17, 19].

G/3(G)
G
S
»
e g
N, ¢
a C

Figure 3.12: A graph and its decomposition

For example, the in the graph G in the Figure 3.12 we have G/ 3(G) =
{{h,i},{e, f,9},{d},{a,b,c}}. The complete decomposition is given in the right
side of the figure.

3.7 An example of a &-radical graph

Let N be the set of natural numbers and let us define a binary relation o« on the
set N as follows

nom n<m A odd(m),

where odd(m) is true iff m is odd. In this section we will prove that the corre-
sponding infinite graph A" = (N, x) is J-radical.
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Lemma 5 If M C N is a module, x ¢ M and x +1 € M then z+2 & M.

Proof. Let M be a subset of N such that * ¢ M and = + 1 € M. Suppose that
z+2€e M.

If x is odd then = + 2 is odd and = + 1 is even. Accordingly, x o< = + 2 and
T okx+ 1.

If x is even then = + 1 is odd and z 4 2 is even. Accordingly, z < z 4+ 1 and
z ok & + 2. Therefore M cannot be a module. O

Lemma 6 If M C N is a module, r <y <z € M andy ¢ M then v ¢ M.

Proof. If z is even then x o z and z ¢ y. Therefore x and z cannot lie in the
same module M.

If z is odd then y o z and y « x. Therefore x ¢ M. O

Theorem 21 A proper subset M C N is a module iff either M = {n} or M =
{0,...,n — 1} for some n € N.

Proof. The ifpart is trivial. Let M # () be a module and there is no n such that
M =1{0,...,n — 1}. Therefore there is y ¢ M such that y +1 € M. Let x # y be
an arbitrary natural number.

If x <ythen 2 ¢ M by lemma6. Let x > y+ 1. If x € M then > x4+ 2 by
lemma 5 and therefore y ¢ M by lemma 6 which is a contradiction. Therefore

z & M and obviously M = {y +1}. O

Thus we have proved that there is a sequence of modules in A/
MyC My CMy,C...CM,C..

such that every nontrivial module M is equal to one of the modules M. Ac-
cordingly, the congruence lattice Con A/ is isomorphic to the ordinal number
w+1=1{0,1,2,...,w} which obviously has no co-atoms.

3.8 Congruence lattice of a finite -semisimple
graph
It is remarkable that the value of $-radical depends only on the congruence

lattice of G but not on G itself. Thus one can define §-semisimple graphs by
their congruence lattice. We know the following 3-semisimple graphs.

e A trivial graph 0 = ({#},0). Its congruence lattice is isomorphic to the
trivial lattice II; — the partition lattice of the set 1 = {0}.
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e All simple graphs have the congruence lattice isomorphic to II; — the par-
tition lattice of the set 2 = {0, 1}.

o The edgeless graph with n-vertices O, and the complete graph with n-
vertices K, have a congruence lattice isomorphic to II,, — the partition
lattice of the set n ={0,1,...,n — 1}.

e n-element linear orderings have a congruence lattice isomorphic to IT5™*.
This is quite obvious but we will prove it.

Theorem 22 The congruence lattice of the n-element linear ordering is isomor-
phic to 151

Proof. Let G = (V,E), V = {0,....,n — 1} and F is a linear ordering such
that (i,7) € E iff ¢ < j. It is obvious that there are n — 1 atoms in Con G.
They are just the congruence relations (01), (12),...,(n —2,n— 1), where (¢, +1)
denotes the congruence relation where 2 and ¢ + 1 are the only elements which
are different and equivalent. It is obvious that every congruence relation can
be uniquely represented as the least upper bound of certain set of atoms and
for every set of atoms there is a unique congruence corresponding to this set of
atoms. O

Corollary 2 A graph G is S-semisimple if and only if Con G ts either isomorphic
to I1,, or to (II)" for a suitable n > 0.

Therefore, all the congruence lattices of finite §-semisimple graphs are rep-
resented in the following diagram. In the Figure 3.13 is a Hasse diagram of
the partially ordered set of congruence lattices of all finite $-semismple graphs.
Ly < Ly means that there is a lattice embedding Ly — L.

3.9 Jordan-Dedekind chain condition

Let L be a finite lattice. We say that L satisfies the Jordan-Dedekind chain
condition (JD) if any two maximal chains of L have the same length.

Theorem 23 [f Con (G is finite then it satisfies the Jordan-Dedekind chain con-
dition (JD).

Proof. = We will prove the theorem by induction on the size of Con . The
statement of the theorem is obvious when G is $-semisimple. Indeed, all the
finite partition lattices are semimodular and therefore satisfy JD. Lattices II%
satisfy JD because if L4, ..., L, satisfy JD then also the direct product Ly x ... x L,
satisfies JD.
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" I,
O (e}
I3 I,
O,
\’% - /
O\ /O
I’h
IT,

Figure 3.13: Congruence lattices of finite 3-semisimple graphs.

Let |Con G|= k and all the smaller congruence lattices satisfy JD. We can
assume that S(G) # 0. Let

c: O=ocg<om<..<op1=0<0, =1

di 0=op<o0y<..<o,_ =0 <o, =1

two maximal chains of Con G. Obviously o and ¢’ are co-atoms of Con G and
therefore §(G) < o and I(G) < o', Let £(c) denote the length of c. Let s, s’ and u
be maximal chains of the intervals [(G), o], [S(G), 0'] and [0, J(G)] respectively.
Let t:09 < ... < oppg and th o) < ... < 0! ;.

It is obvious that the ideal S(G)A = (/ 3(G) satisfies JD because G/ (@) is
S-semisimple. Therefore ¢(s) = ((s"). Also the ideal oV satisfies JD because (by
theorem 10) it is isomorphic to the direct product of smaller congruence lattices.

Therefore ((t) = {(s) + ¢(u). Similarly £(¢') = {(s") 4+ {(u). Accordingly

Ue) = L) +1=L(s)+(u) + 1
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and thus Con (& satisfies JD. O
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The congruence lattices of graphs satisfying a given lattice identity are stud-
ied. A complete characterization of all finite graphs with the congruence lattice
laying in a given lattice variety is presented.

4.1 Introduction

It has been proved in [38] (see Theorem 8, page 43). that the set of all congruence
relations of a given graph G is a complete lattice. In the current chapter the
following problem is solved.

Problem. Let I be a lattice identity. Find a characterization for all finite
graphs G such that Con GG satisfies I.

To solve this problem, the 3-radical defined in [38] as the meet of all co-atoms
in Con (G is useful. If 3(G) =0, then either Con G = I1,, or Con G = I1}, where
I, is the lattice of all partitions of n = {0,...,n — 1}. For every J-semisimple
graph G define a positive integer n(G) such that n(G) = n if G is a complete
or edgeless graph with n vertices (i.e. if Con G = I1,,) and 7(G) = 2 otherwise.
Let V be a lattice variety such that L € V for at least one lattice L. There is a
unique positive integer n such that Ily,...,II, € V, but II,,;; € V. Denote this
n as n(V).

Theorem. [IfG/3(G) ={G1,...,G,} and V is a lattice variety then Con G lies
in'V if and only if n(G/ 3(G)) < (V) and ConG; €V fori=1,...,n.

G/ 3(G) denotes the factor-graph of G by J(G) and G, are the congruence
classes viewed as subgraphs of GG. It follows from the theorem that for every
lattice identity I there is an O(|V]*) algorithm that determines whether I holds
in Con G, where V is the vertex set of G.

4.2 Partition lattices

Let A be an arbitrary set and S C II(A) be a nonempty set of equivalence
relations on A. A finite sequence

g, 1y ..., 0y,
where a; € A, is called an S-chain if for every ¢ there is an equivalence relation

pi € S such that (a;,a;+1) € p;. Two S-chains a : ag,...,ap and b : by, ..., by are
equivalent if for every ¢ there is p; € S such that (a;, a;41) € p; and (b;, b;i11) € p;.
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It is well known that (x,y) € sup S iff # and y can be connected with an S-
chain. If (z1,y1) € sup S and (x2,y2) € sup S, then the corresponding S-chains
can be chosen in such a way that they are equivalent.

Theorem 24 For all graphs G = (V, E) the lattice Con G is a complete sublattice
of II(V).

Proof. It is sufficient to show that the least upper bound (in II(V)) of every
nonempty set S of congruence relations is a congruence relation. Let p = sup 5,
zpz', ypy' and —(xzpy). So, there are equivalent S-chains

!

T = TgyL1y:ery Ty = T,
. , ; 2!
Y=1Yo,¥1,--,Y4Y¢ =Y

such that x;p;x;11 and y;p;y;1 Vi < L.

Let (x,y) € E. We will show by induction that (z;,y;) € E for all 0 < ¢ < {.
Indeed, the case ¢ = 0 is trivial and if (x;_1,y;—1) € F, then x;_1p;—12;, Yic1pi—1Y;-
But —(z;_1pi—1yi—1), because otherwise there would be an S-chain

T =20, L1yeery Ti—15Yi-15--3Yo = Y.

As p;—1 € Con(G), we get from the definition of congruence relation that {(z;,y;) €
E. Therefore, p = sup S is a congruence relation. O

4.3 Neutral and strongly neutral elements

An element « of a lattice L is said to be neutral ([1],[15]) if
(aANz)V(zAy)VyAha)=(aVz)AN(zVy)A(yV a)

for all z,y € L. The following theorem gives us two equivalent formulations of
neutrality.

Theorem 25 Let L be a lattice and let « be an element of L. The following
conditions are equivalent:

o « is neutral;

o « s distributive, dually distributive, and a Nz =a Ay andaVzr=aVy
imply x =y for any x,y € L;

o the mapping
) L —aVx a®
¥ r— (zANa,zVa)

is a lattice embedding.
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A proof is given in [15].

Let V be an arbitrary set, L be a complete sublattice of II(V) and p € L.
We say that p is strongly neutral in L if

pVo=cUp
for arbitrary o € L.

Lemma 1 An equivalence relation p € L is strongly neutral iff
v/pCuv/o or v/oCuv/p (4.1)

for arbitrary o € L and v € V, where v/p denotes the p-class containing v.

Proof. Let us assume that p is strongly neutral, o € L, v € V and v/p € v/o.
We will show that v/o C v/p. As v/p is not a subset of v/o, there has to be an
u € v/p such that u &€ v/o. Let w be an arbitrary element of v/o. As (w,v) € o
and (v,u) € p, we have

(w,u) e pVo=pUo

and thereby (w,u) € p because (w,u) € o. Now we have w € u/p =v/p. As w
has been chosen arbitrarly, we conclude that v/o C v/p.

Let us assume that the condition (4.1) holds. It is sufficient to prove that pUo
is an equivalence relation. It is obvious that pU o is reflexive and symmetric. We
will prove the transitivity. Let (u,v),(v,w) € pUo. If these pairs lie both in p
or in o, the transitivity is obvious. Let (u,v) € o and (v,w) € p. If (u,w) & p,
then u ¢ w/p and therefore

v/o =ufo Lwlp=uv/p
and by condition (4.1) we have w € w/p = v/p C v/o = u/o showing that
(u,w) € 0. O

Lemma 2 FEvery strongly neutral element is neutral.

Proof. Suppose p € L is strongly neutral. Let us prove at first that the mappings
o+ opand o — oV p are endomorphisms of the lattice L. The second mapping
is obviously a morphism because of the distributivity of the lattice of all subsets
of A. Let v =00V 6. We will prove the equality

yNp=(aNp)Vv(énp).

Indeed, as ¢ C v and 6 C #, it follows that cNp CyNpand 6Np C yNp.
Therefore, v N p is an upper bound of the equivalence relations ¢ N p and 6 N p.
It remains to show that it is the least upper bound. Let

cNpCr, 6NpCr, (4.2)
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and (u,v) € yN p. Accordingly, (u,v) € 0V é and (u,v) € p. Therefore there is
a {o,6}-chain

C: U =1Vg,V1,...,0 = V.

If (vi,viq1) € p for each i < £, then obviously cis a {cNp, 6N p}-chain. Therefore,
by the inclusions (4.2) and the transitivity of 7, we have (u,v) € 7.

Let ¢ be the smallest index such that (v;,v;41) & p. Then either v;/o € v;/p
or v;/6 € v;/p. Accordingly, by Lemma 1, either v;/p C v;/o or v;/p C v;/é,
which gives that either (u,v) € o or (u,v) € §. This implies (u,v) € 7. Thus, p
is a distributive and dually distributive element.

We assume now that oV p =6V pand cNp = 6N p and show that o = ¢.
Let (u,v) € o. If (u,v) € p, then (u,v) € oNp = 6N p C 6 and therefore
(u,v) € 6. If (u,v) & p, then from (u,v) € 0 CoVp=6Vp=20Up it follows
that (u,v) € 6. Therefore o C é. The proof of § C o is similar. Accordingly, p is
a neutral element of L. O

Lemma 3 If there is a co-atom p in Con G such that there are at least 3 vertices
in G/p, then p is a unique co-atom of Con G and, furthermore, p is the least
upper bound of all congruence relations different from 1.

The proof is given in [38] (see Theorem 16, page 50).

Theorem 26 [f G/ J(G) is edgeless [complete], then every 3(G)-class G, is con-
nected [complement-connected).

Proof. Let G/ J(G) be edgeless and G, € G/ (G) be not connected. Let G be
an arbitrary connected component of G,. It is obvious that there are no edges
between ! and GG — ' and therefore {G!, G — '} is a congruence partition and
the corresponding congruence relation p is a co-atom in Con GG and I(G) £ p,
which is a contradiction with the definition of J(G).

If G/<3(G) is complete, the proof is similar. O
By A,, we mean the graph ({0,1,....n —1},{(¢,7) | 0 <t < j < n}) (a linear

ordering with n elements).

Theorem 27 [f G/ () is linear, then none of the I(G)-classes have a factor-
graph isomorphic to Ay (Figure 3.11, page 53).

Proof. Let G/ (G) = (Vo, Fo) be a linear ordering and H € G/ J(G). Suppose

there is an epimorphism H J, Ay and {Hy, Hy} is a partition corresponding to

Ker f; (f(H1), f(H2)) € E(As).
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We say that H' € Vg is less than H € Vo if H'H € Ey. Let G; € G/ 3(G) be
the set of elements of G/ 3((G) less than H and Gy be the set of elements greater
than H. It is obvious that the partition

{(UG1)U Hy, (UGs)U Hsy}

is a co-atom of Con GG which is not comparable with (). This is a contradiction.
O

Theorem 28 The radical 3(G) is a strongly neutral element of Con G.

Proof. The statement is trivially true if | G|< 2. Let us assume that |G |> 3.
As the graph G/ 3(G) is S-semisimple, we know that G/ J(G) is either simple,
complete, edgeless or linear (Theorem 20).

The cases when G/ 3(G) is edgeless or complete are dual, so it is sufficient
to consider only one of them. Let G/ J(G) be edgeless, v € V be an arbitrary
vertex, o € Con(G, and v/o € v/J(G). Consequently there is a vertex u €
v/o — v/ 3(G). By Theorem 26 the induced subgraph v/ (@) is connected.
Thereby, for any vertex w € v/ (@) there is a chain of vertices v = vg, vy, ..., vy =
w € v/ (@) such that v;v;y € FUE™ 0 <7 < n—1. We will prove by induction
that all the vertices v; lie in v/o. Obviously v lies in v/o. Assume that v; € v/o
and v;11 € v/o. Since there is an edge between v; and v,y and u is contained in
the module v/o which does not contain v;y1, there must be an edge between u
and v;41 as well. Since G/ J(G) is edgeless, this implies u/ J(G) = vi11/ S(G),
a contradiction.

Let G/ 3(G) be linear. Let H = v/ 3(G) and v/o be overlapping modules. By
Theorem 12 the intersection HNv/o and set difference H—v /o are modules of the
induced subgraph H, and thereby we have a partition of H into modules. It is easy
to show that the corresponding factor-graph is linear, which is a contradiction
with Theorem 27.

If G/ (@) is simple then §(G) is the unique co-atom of Con G. If |G/ I(G) |=
2, then G/ (@) is either complete, edgeless or linear. Thus we can assume
without loss of generality that |G/ J(G)|> 3. It follows directly from Lemma 3
that every congruence relation p € Con GG is comparable with () and therefore
I(G)V p=I(G) Up for every p € ConGG. O

4.4 Partition number of a variety

We will show in this section that the finite partition lattices Il, play an important
role in studying the lattice identities holding in Con (.
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Let £ be the class of all lattices, V C £ be a lattice variety, and Ly, ..., L, be
arbitrary lattices. It is obvious that their direct product

L=L xLyx..xL,

lies in V if and only if every L; lies in V. For example L is modular [distributive]
iff every L; is modular [distributive].

As proved by Sachs in 1961 [5], every lattice identity that holds in every finite
partition lattice must hold in every lattice. Thereby, for every lattice variety
V # L, there is a unique natural number 7(V) such that Il ) € V and IL,, € V
for every natural number m < n()V). The natural number n(V) is called a partition
number of the variety V.

For example, the class of all distributive lattices has the partition number 3,
the class of all modular lattices has the partition number 4.

Lemma 4 IfV is a lattice variety and n(V) = 2, then every lattice in'V is trivial.

Proof. If L € V is a nontrivial lattice then it has a two-element sublattice
isomorphic to II,. Therefore n(V) > 2. O

Let £, denote the variety generated by the lattice II,_;. Obviously,
L:CL,CL;C...CLC..CL.

It follows from the Jonsson lemma [10],[29] that all these inclusions are proper,
i.e. for every natural number n > 0 there is a lattice identity that holds in II,
but not in I, ;. For the case n = 1, the suitable identity is x = y, for the case
n = 2, it is distributivity and for the case n = 3, modularity. It turnes out that
the suitable identity for n = 4 is

o N (.171 V T2 V I3 V $4) = [$0 N (.171 V T2 V 503)] V [.170 A (fCl V T2 V 14)]
\/[$0 A (l‘l V I3 V $4)] V [Io A (xg V T3 V .1?4)]

Obviously, the left-hand side is greater or equal than the right-hand side. To
show the opposite inequality, it is sufficient to mention that for arbitrary elements
o, a1, ..., aq of I14 the equivalence relation ag A (a1 V ... V a4) is equal to one of

ap N (a1 V a9 V Clg), Qo A (Cll V a9 V Cl4), aq N (G,l \% as V CL4), ap A (Clg V as V CL4),
because there are no chains of length 5 in Il and therefore the chain
O§a1 §CZ1VCL2§CL1VGQVG3§CL1VGQVG3VCL4§1

must have two equal elements.
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But this identity does not hold in IT5. Take, for example, o = (04), z; = (01),
zy = (12), 3 = (23), and x4 = (34), where (¢j) denotes the minimal equivalence
relation containing the pair (¢, 7).

A proof of the general case is similar to the proof of the case n = 4. Let X =
{zg,x1,...,2,} be the set of variable letters. A suitable identity that separates
II, and I1,, 44 is

oA (21 V...V a,) = \/[:co ATy VoV 2yp-)]

13

where the join in the right-hand side is calculated over all possible injections

{1,...,n—1} = {1,...,n}.

4.5 Identities in Con GG

Let £ be the class of all lattices, L5 be the class of congruence lattices of all
finite graphs. We say that two lattice varieties V; and V, are equivalent and write

VlNVQ 1ffV1ﬂ/Jg=V2ﬂ,Cg

Lemma 5 Let G be a graph, V be a lattice variety and G/ 3(G) = {G,}ier.
The congruence lattice Con G lies in V iff all the lattices Con G; and the lattice
Con(G/3(G)) lie in V.

Proof. Assume Con G € V. Now Con GG; € V, because there are lattice embed-
dings Con G; — 3(G)Y < G, and Con G/ $(G) € V, because Con G/ §(G) =
%(G)A < ConG.

And conversely, if every Con (G; and Con GG/ J((G) lie in V, then by Theorem
28 there is a lattice embedding

Con G — (@)Y x I(G)* = Con(G/ F(G)) x [] Con G,
€T

and therefore Con G € V. O

Let £ be the class of all congruence lattices of finite $-semisimple graphs.
Let Vi and V; be lattice varieties. We say that V; and V; are $-equivalent and
Write Vl ~7J VQ llcf Vl N ,CJ == VQ N ,CJ.

Lemma 6 Two lattice varieties Vi and Vs are S-equivalent if and only if n(Vy1) =

n(Va).

Proof. Theorem 20 gives us a complete characterization of the class L£;. It is
obvious that if any of the direct powers II% lies in V; or in V,, then all IT5, ¢ =
1,2,3,..., lie in V; or in Vy, respectively. Therefore, V; and V; are $-equivalent
if and only if they contain the same partition lattices Ily, Il,,....I1,, ..., i.e., iff
n(V1) =n(V2). O
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Theorem 29 Two varieties Vi and Vs are equivalent if and only if their partition
numbers coincide, i.e.,

Vi~ Vo & (V1) = n(Va).

Proof. If Vi N Lg = Vo N Lg then (V1) = n(Vy). Indeed, if K, is a complete
graph of n vertices, then Con K,, £ I1,, and therefore {I1;,II,,...} C Lg.

Let us prove the opposite implication. Let G be a finite graph. Let n(V;) =
n(Vsy). Then, by Lemma 6, V1 N L; = Vo L. If G is S-semisimple, then
obviously

ConGG € V; & ConG € Vs. (4.3)

Assume that (7 is not J-semisimple and (4.3) is valid for all finite graphs smaller
than G. Let G/ 3(G) = {G,;}iez. By Lemma 5 Con G lies in Vy iff every Con G;
and Con G/ (@) lie in V;. But G; and G/ (@) are smaller than G and therefore
by (4.3) we get that Con GG is in Vy iff Con G;,¢ € Z, and Con G/ J(G) lie in Vs,
and by Lemma 5

ConG €V, & CondG e V,.

O

Corollary 3 If G is a finite graph andV is a lattice variety with partition number
n(V) then Con(G) € V if and only if the modular decomposition of G does not
contain graphs O, and K, with n(V) < n.
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We show that the graph decompositions using the lexicographic product op-
eration arise naturally as the congruence relations of the graph. A complete
characterization of the congruence lattice of a finite graph is given.

5.1 Lexicographic product of graphs

Congruence relations of a graph are closely related to the well-known generalized
lezicographic product operation introduced by Sabidussi [4] which is a general-
ization of the composition operation introduced by Harary [3]. For any graphs

Go = (Vo, Fy) and G, = (V,, E,), (v € Vg) by their generalized lexicographic
product Go[(G,)vev,] we mean a graph GG with the vertex set

V={(v,w)|ve€Vo,weV,}
and with the edge set

E = {(v,w)(v,w') | vv’ € Eg, or v =2 and ww' € E,}.

Go G, Gy GolGoGh
(b7 bl) (bv 62)
) ° .
—o ° °
ay a2 bl bg ><
a
(av al) (a7 a2)

Figure 5.14: An example of the generalized lexicographic product.

It can be easily verified that the partition of the vertex set V' into the compo-
nents GG,,v € Vj is a congruence partition and the corresponding factor-graph is
isomorphic to Go. Moreover, if p is a congruence relation of a graph G = (V, F),
Go = (Vo, Fo) = G/p is the corresponding factor-graph, G, (v € Vp) are the
p-classes (viewed as induced subgraphs) then G = Go[(G)vev,]. Therefore, there
is a one-to-one correspondence between the decompositions of a graph into gen-
eralized lexicographic products and the congruence relations.

Accordingly, every finite graph can be assembled from simple graphs using
the generalized lexicographic product operation. Such a decomposition is known
as the X-join decomposition [9], substitution decomposition [17], modular decom-
position [19] and prime-tree decomposition [24], [25], [26].
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5.2 Lexicographic product of lattices

Let Vg be a set and Lg be a sublattice of the partition lattice II(V5) (the lattice of
all partitions of V5). Let L,, (v € V5) be arbitrary lattices. By the lexicographic
product Lo[(Ly,)vev,] we mean the following subset of the direct product Ly x

HUEVO LU:
{(00, (00)vevy,) | Vo, 0w € Vo0, # 1, (v,w) € 09 = v=w}.

We will prove in current chapter that this operation is sufficient for generating all

(1,1,1)

Ll Lo[Ll, ] I(O,l,l)

Ly L, / (0,£,1)
11 JI (010)\ \(001)

<oeo)\\o/

(0,0,0)

0 0

Figure 5.15: An example of the lexicographic product of lattices.

congruence lattices of finite graphs. We prove that in certain cases the mapping
Con is lexicographic product preserving:

Con(Go[(Gy)vevs]) = (Con Go)[(Con G v - (5.1)

We prove that the congruence lattice of a finite graph G' can be assembled from
the lattices IT,, and (Il,)* using the lexicographic product operation.

5.3 Properties of the lexicographic product of
lattices

Let Lo be a complete sublattice of II(Vg) such that 0,1 € Lo and {L,},ev, be
arbitrary lattices with 1.

Theorem 30 L = Lo[(Ly,)vevy] ts a subdirect product of the lattices Ly and L,
ve W

Proof. We will show that L is a sublattice of the direct product of lattices Lg
and (Ly)pev,. Let 0 = (00, (04)vevy) € L and 6 = (6o, (6y)vev,) € L, that is

VoweVy: o, #1, (v,w)€Eogy = v=w
Yo,we V- 6y Z 1, (v,w) € 6y = v=w.
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We have to show that o A § = (09 A bo,(0y A 6y)vev,) € L and oV é = (o9 V
b0, (0 V 6y)vev,) € L.

Let o, A 6, # 1. Then either o, # 1 or 6, # 1. If now (v,w) € o¢ A 6y then
(v,w) € ¢ and (v,w) € 6y and thus v = w.

Let 0,V é, # 1. Then o, # 1 and 6, # 1. Let (v,w) € o9 V 9. As Ly is a
complete sublattice of II(Vp), there has to be a chain vy, ..., v, € V4 such that

U = V¢ Yo Vs—1 Yo Y¢—2 Yo V¢—3 Y0 ... Y0 Vo = W,

where 7o = 09 U 9. We can now prove the equality v = w by induction. Assume
vj—1 = w. Thus (vj,w) € v and therefore either (v;, w) € g or (v;,w) € bg.
Thereby, v; = w.

For arbitrary oq € Lo we have (09, (1,)vev,) € L and for arbitrary v € V5 and
oy € L, we have (0, (0y)uev,) € L, where

_} oy, whenu =w,
Tu l,, when u # v.
Therefore we have a subdirect product. O

Theorem 31 If |V5|> 2, a = (0,(1,)vevy) € L = Lo[(Ly)vev,] and ¢ is a co-atom
of L then a < c.

Proof. We point out that (1,(1,).ev,) is the unit element of L. Let ¢ =
(co, (cu)uevy) be a co-atom of L such that ¢, # 1. Let ¢ = (co, (¢, )uev, ), where

, { 1,, when u = v,

Cc =
u ¢y, when u # v.

Obviously, ¢ < ¢ € L, but ¢/ < 1 because if ¢j = ¢g = 1 then ¢, = 1 which is a
contradiction. Therefore, if ¢ is a co-atom of L then ¢, = 1 for each v € V5 and
accordingly a < ¢. O

Theorem 32 a = (0, (1, )vev,) is a neutral element of L = Lo[(Ly)vevy), i-e. for
arbitrary x,y € L

(anz)V(zAy)V(yAa)=(aVa)A(xzVy)A(yVa).

Proof. The proof is obvious because 0 is a neutral element of Ly and 1, is a
neutral element of L, for each v € V4. O

Theorem 33 Ifa = (0,(1,)vev,) € Lo[(Lv)vev,] then

CLA = LO
avV = H L,.
UE‘IO

The proof is trivial.
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5.4 Decomposition of ConG

Let GG be a finite graph. Let p be a strongly neutral congruence relation of G,
G/p = (Vo, Eo) and {G, },ev, is the corresponding partition. By Theorem 9 and
Theorem 10 there is a lattice embedding

{ Con G — Con G'/p x Il,ev, Con G,

"V o (.00 l6,)en))

Theorem 34 (¢, (0,)vev,)) lies in Ime if and only if

Yo,weVo: o, #1, (H,G,) €09 = Gy =G,. (5.2)

Proof. Let (00, (04)vev,) € Ime, i.e. there is o € Con G such that oy = & and
oy, =0 lg,. If o, # 1 and (H,G,) € og then there are h € H and g, € G, such
that (h,g,) € 0. Suppose, H # (,. Then we have ¢,/p € g,/o and therefore,
because of the strong neutrality (Lemma 1)

Gy :gv/pggv/a

which implies o, = ¢ |g,= 1. A contradiction. Accordingly, H = G,.

Assume we have an element (oq, (0,)sev, ) such that (5.2) holds. It remains to
show that there exists o € Con (& such that (o) = (09, (04)vev, ). Let us define o
as follows

o:={(u,w)|Iv e Vy: (u,w) €y, or (u/p,w/p) € oy and u/p # w/p}.

We will prove that every o-class M is a module. Let u,w € M and ¢t &€ M.
Thereby (u,w) € 0 and (u,t) & o, i.e.

dv e Vy: (u,w) €0y, or (u/p,w/p) €09 and u/p # w/p (5.3)
Yo e Vo (u,t) € o,, and (u/p,t/p) & oo or u/p=1t/p. (5.4)

If (u,w) € 0, and ut € E [dually tu € E] then wt € E [dually tw € EJ.
Indeed, in the case if t € G, the statement follows from the fact that u/o, is a
module, otherwise ¢t € &, we use the fact that (G, is a module. If u/p # w/p and
(u/p,w/p) € og then o, # 1 and by (5.2) we have w/p = u/p, a contradiction.
Therefore by (5.4) we have (u/p,t/p) & o¢. If there is an edge between t and u
in graph G, there has to be an edge between the corresponding p-classes t/p and
u/p in the factor graph. As (u/p)/og = (v/p)/0oo is a module in G/p there has to
be an edge between ¢t and v in G/p. Therefore, M is a module and thereby o is
a congruence relation. It remains just to verify that «(o) = (09, (04)vev,) Which
is obvious. O
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Corollary 1 If G is a finite graph, Go = G/ 3(G) = {G1,....,G,} and Ly =
Con G/ 3(G) then

Con G = Con Gy[(Gh, ..., Gr)] = Lo[(Con Gy, ..., Con G,,)].

Corollary 2 A lattice L is isomorphic to the congruence lattice of a finite graph
if and only if it can be assembled from the lattices 11, and (Il,)" using the lexi-
cographic product operation, assuming that the constructions

(L) (..., (ILL)", ..)],
with £ > 1 are not allowed.

The last theorem gives us a complete characterization of the congruence lattice
of finite graph.

5.5 Congruence lattice of an undirected graph

Theorem 35 If Ly — II(n) and L} — TI(m) are lattices, the co-atoms of Ly
and L{ intersect to 0,

L= Lo[(Lyy.... L) & Lo[(LY, ..., L) = L'

and Ly, ..., L,, LY, ..., Ll are non-trivial directly indecomposable lattices then m =
n and there is a suitable substitution n — n such that L; = L’a(i) for all 1 < n.

Proof. Let ¢ and ¢ be the intersection of all co-atoms of L and L' respectively.
Therefore, by Theorem 31, we have ¢ = (0,1,1,...,1) and ¢ = (0,1,1,...,1). If
L %5 I'is an isomorphism then obviously ¢(¢) = ¢’ and therefore, by Theorem

30, we have
Ly x .ox L, =L x...x L.

Accordingly, (a proof is presented in [15]) n = m and there is a bijection n — n
such that L; = L’a(i) forall: <n. O

Lemma 1 If Con G = II, x II; then G is not undirected.

Proof. Assume (' is undirected and Con G = II, x Il,. Let p; and ps be
co-atoms of ConGG. G is I-semisimple because p; A p2 = 0. Therefore G must
be either a complete graph or an edgeless graph and therefore Con G = 11, for
some n which is a contradiction. O

Theorem 36 The congruence lattice of a finite undirected graph G s directly
indecomposable.
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Proof. We use the induction on the number of congruence relations of GG. The
statement is obviously true for simple graphs. Let (G be a graph and the statement
is true for all graphs G’ such that | Con G’ |<|Con G'|. Let Ly, Ly be nontrivial

lattices and Ly x L4 2, Con GG be a lattice isomorphism. Let p; and p; be atoms
of Ly and Lj respectively. Then p; = ¢(p1,0) and ps = ¢(0,p2) are atoms of
Con GG. Obviously,

12

ConG/p; = ;e
ConG/p, = p,°

PlA X Ly

12

Ll X pgA.

As |Con G/py |<|Con G| and |Con G/pz |<|Con G|, if follows from the induction
hypothesis that Con G/p; and Con G/ p, are directly indecomposable. Therefore,
at least one component is trivial in both decompositions. As L; and L, are
nontrivial, we have py = 1 and p; = 1. Accordingly, Ly, = L, = II, therefore
Con GG = 11, x II, which is impossible by lemma 1. O



7






6.1. COMPARABILITY GRAPHS 79

In this chapter we assume that all graphs are finite.

6.1 Comparability graphs

Comparability graphs are very important objects in the field of combinatorics.
They have been studied extensively by A. Ghouila-Houri [6], P.C.Gilmore and
A.J.Hoffman [7] in the sixties and independently by A.Pnueli, A.Lempel and
S.Even in the seventies [12].

Let us look at the first (undirected) graph in the figure 6.16. Suppose we want

S OLORA

Figure 6.16: Graph and its transitive orientation

to replace undirected edges with directed edges in such a way that the last two
graphs in the figure 6.16 (fork and cycle) are not induced subgraphs of the final
directed graph. The second graph in the figure 6.16 shows how it can be done.
Such graphs are known as comparability graphs or transitively orientable (TRO)
graphs. For example, the graph in Figure 6.17. If we set a bit weaker requirement

R

Figure 6.17: A comparability graph oriented transitively.

to the final graph by forbidding only the forks, we get a class of graphs called
pseudotransitively orientable graphs. It is clear that every comparability graph
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is pseudotransitively orientable, but we also emphasize that a pseudotransitively
oriented graph may contain cycles. For example, look at the graph in the figure
6.18 and also the third graph in the Figure 6.16.

It may seem surprising, but it turns out that if we can avoid forks in the
final graph then we can avoid cycles as well. This is the corollary of the following
theorem which is a consequence of several statements proved by A.Ghouila-Houri,

P.C.Gilmore, A.J.Hoffman.
Theorem 37 FEvery pseudotransitively orientable graph is transitively orientable.

We give a proof which is not the shortest possible, but contains some new
ideas about the algebraic description of graphs. The main idea is based on the
modular decomposition discovered by Jeremy Spinrad (e.g. [19]).

Figure 6.18: A graph oriented pseudotransitively with cycles.

6.1.1 Simple graphs and transitive relations

Binary relation S in the set V' is said to be pseudotransitive if the condition
zye S, yz€ S=>zz€S5 or zx €S

holds for every z,y,z € V. A graph G = (V, F) is pseudotransitively orientable
if there exists a pseudotransitive relation S such that £ = SUS™!. Similarily, G
is transitively orientable if there is a partial ordering 7' such that £ =T U T™1,

Graph G = (V, F) is pseudotransitively orientable iff xy # yz(I') for every
edge zy € E.

Theorem 38 If G = (V,E) simple, S is a pseudotransitive relation and E =
SUS™! then S is transitive.
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Proof. Assume S is not transitive. It follows from the simplicity (primeness)
that S and S™! are the only I'-classes of (. Indeed, if zy € F and zt € F then
either zy = z¢(I') or zy = tz(I'). Now define a ternary relation Z in V such that
zyz € Z iff zy, yz and zx belong to S. We say that vertices z, vy, z form a cycle.

Lemma 1 If zyz € Z then (xy,ty) € Ky implies tyz € Z and (zy,at) € K_
implies xtz € Z

Proof. Let us prove the first claim, the proof of the second one is similar. If
ryz € Z and (xy,ty) € Ky then zy,yz, zz,ty € S and zt,tx & S by definition of
Ky. Asty € S and yz € S, it follows from pseudotransitivity that either zt € S
ortze S. Iftz € S then zz € S implies tx € S or xt € S, which is impossible.
Therefore zt € S and then tyz € Z. This proves the lemma. O

As S is not transitive there is at least one cycle zyz and therefore xy = yz(I').
But then there should exist a chain of edges

xy Ky tyy Ko tty Ky ... Ky tityy Ko 1z Ky yz
Now we can use the previous lemma to get the following chain of implications

ryz € Z, (zxy,tiy) € Ky = tiyz € Z
tlyz € Z, <t1‘y,t1t2> € K_ = tthZ € zZ
tthZ € Z, <t1t2,t3t2> € [(_|_ = tthZ € zZ

tity_12 € Z, <tgtg_1,tg2> e K. = t,zzeZ

The last sentence is obviously wrong. A contradiction. O

Thereby, we have proved the special case of Theorem 37, i.e. the case if GG is
simple.

Let us use the notation 7O((G) if G is transitively orientable and the notation
PO(G) if GG is pseudotransitively orientable. It is clear that the properties 7O
and PO are both hereditary.

Theorem 39 The properties TO and PO are equivalent for all graphs.

Proof. It issufficient to show that 7O and PO are inductive. Let GG be graph and
G/p = {G4,...,Gs} is a congruence partition and the graphs G/p,G1, ..., G, are
transitively [pseudotransitively] orientable. Let T4, ..., T, T, be the corresponding
transitive [pseudotransitive] and antireflexive relations. Define the relation T' as
follows

T = {(2,y) | 3i((e,9) € T) or (x(x),7(y)) € T,)
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where G — (G/p is natural projection. It is easy to verify that T is indeed
transitive [pseudotransitive]. Therefore GG has property 7O [PO].

Thereby the properties 7O and PO are equivalent for prime graphs (by
Theorem 38) and they are both inductive and injective. Thus (by Lemma 1)
the properties 7O and PO are equivalent for all graphs. O

6.1.2 Permutation graphs

Suppose we have a permutation {1,....,n} —— {1,...,n}. By a permutation graph
({(o) we mean an undirected graph (V, E U E~') such that V = {1,...,n} and

E={{1,5) i<y, 0(y) <o(i)}.

It is easy to see that an undirected graph G = (V, F) is a comparability graph
if and only if there exists a partial ordering 7' on V such that et £ = T U T,
and (G is a permutation graph if and only if there exist two linear orderings R, S
on V such that
E=(RnSTHu(SNnR™M).

It turns out (proved by Pnueli,Lempel and Even [12]) that the permutation graphs
and comparability graphs are closely related.

Theorem 40 An undirected graph G is a permutation graph if and only if G ja
G are transitively orientable.

Proof. Let G = (V,E) be a permutation graph and R, S be suitable linear
orderings, i.e.

E=(RnSHUSNRYHY=(RNSHU(RNST)

As R and S7! are orderings their intersection is also a partial ordering and thereby
a suitable partial ordering is 7' = RN S™'. The complement graph G is also a
comparability graph because

E = RNS'NnSNR1=(RUS)N(SUR) =
= (RNSYU(RNS)™
For proving the if-part, suppose G and G are comparability graphs and 7', L are

linear orderings such that # = TUT~! and £ = LU L™, The universal relation
U = (V x V)\1ly may be represented as a direct union

[=T][LIIT '] L7"

It remains to show that R = T'U L and S = T~' U L are linear orderings. We
begin with proving the transitivity of R = T'U L. Suppose {(z,y),(y,z) € R
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and (z,z) € R. We assume without loss of generality that (z,y) € T. Thereby,
because of the transitivity of 7" we have (y,z) € L ° Assuming (z,z) € T7!
(i.e. (z,z) € T) leads us to a contradiction with the transitivity of 7' Assuming
(z,z) € L7" leads us (in a similar manner) to a contradiction with the transitivity

of L.
The linearity of R follows from [ = (T'U L)[[(T' U L)~ which implies that
(T'U L)™* =T U L. The proof that S is a linear ordering is similar. And finally,

E = TUuT'=(Tud)u(T'up) =
= [TULNLHUTT'U(LNL N =
= [(TuL)n(TUL HU(T'uL)Nn(TTTU L™ =
= (RNSTHUu(SNR™M.

O

Each undirected graph with n vertices can be represented using n?/2 bits.
However, for representing a permutation graph we need only 2n - log, n bits of
memory. Indeed, we need log, n bits for encoding a number in {1,...,n} and a
permutation o may be represented as a sequence of n numbers (o(1),...,0(n)).
Its size is n -log, n. For encoding a permutation graph we need another n -log, n
bits for representing an order of the vertices. For example for the edge set E of
the graph in Figure 6.19 there exist no linear orderings S such that (RN S™) U

N

° °
3

[\

Figure 6.19: A graph that may not be represented with a single permutation.
(R~ N S), assumed that R is a natural ordering (defined by the labeling of ().

The next tabel illustrates the values of the functions n?/2 and 2n - log, n.

| 2] 3| 4| 5] 16| 20| 100 |
n?/2 2‘ - 128‘200‘5000‘

2n -logyn | 4 173 | 1329

i
o0
D=
DO

Hence, large permutation graphs may be represented more efficiently by using
permutations. This fact may therefore be useful in data compression.

®Indeed, if (z,y) € T then by transitivity (z,z) € T which contradicts with (z,z) ¢ R.
®Indeed, then we have (z,z),(z,y) € T and (z,y) € T.
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6.2 Cliques of maximum weight

We will show that the hardness of finding the clique of maximum weight is caused
by simple graphs, i.e. if there exists a polynomial algorithm to determine the
maximal clique size in simple graphs, there has to be a polynomial algorithm for
all graphs.

Let G = (V, E) be a undirected grap and V -2 N to be a positive integer
valued function assigning to each vertex v € V its weight p(v). The function p
can be extended to the power set of V by defining the weight of a subset U as
the sum of the weights of its elements, i.e. p(U) := 3 ey p(u). Obviously, the
problem of finding the value of

cd[G, p] == max{p(C) | C CV AVz,ye Clz #y = zy € E)}.

is NP-complete. What we want to do is to decompose the problem into smaller
subproblems using a suitable partitioning of the vertex set. It turns out that the
congruence relations, if they exist, significantly simplify the problem of finding
a maximum clique. It turns out that if there is a nontrivial congruence relation
p € Con G the original problem reduces to similar problems about p-classes. It
turns out that the hardness of this problem is caused by simple graphs. Let p
be a nontrivial congruence relation of G. And let Gy = G//p = {G1,...,G,,}. We
will prove prove that

cl[Go[(Gy, ors Gi)], 1] = cl[Go, f]

where (G;) :=cl[G;, p

Gi]'

Lemma 2 If K is a clique of mazimal weight u(K) in G=(V,E), M CV isa
module and M N K # () then M N K s a clique with mazimal weight in M.

Proof. Let K’ C M and u(K') > u(K N M). We show that (K — M) U K’
is a clique in GG. Indeed, let + € K — M and y € K'. As KN M # (), there is
z € KNM and as K is a clique, we have zz € K. Therefore zy € E because M
is a module.

Therefore, (K — M, K') is a diclique and thus (K — M)UK" is a clique because
K — M and K’ are both cliques. Hence,

pl(K=MYUK'] = p(K—M)+p(K') > p(K - M)+ p(KNM) = p(K).

A contradiction. O

Lemma 3 If K is a cliqgue in G = (V, E) then there exists a clique K in G/p
such that ji(K) = u(K).
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Proof. Let V -5 V/p be the natural projection. Define K := 7(K) = {M |
MedG/pANMNOK #0}. By lemma 2 we have

prK)] = Y p(M)= Y a(MNK)=p(K).

Men(K) Men(K)

Lemma 4 If K # 0 is a clique in G/p then there is a clique K in G such that
W(K) < u(K).

Proof. Let K = {G,...,G,,} where G; € V/p. Let K; be a clique in (; with
maximal weigth p(K;). Define K := U2, K; and show that K is a clique in G
with desired properties. Indeed,

Accordingly, if there exists a polynomial algorithm for finding a maximum
clique in simple graphs then there exists a polynomial algorithm for finding a
maximum clique in all graphs. The best examples demonstrating the power of

k

using structure properties are the Moon-Moser graphs [8] M, = Ok[K,, ..., K}
that have exponential number of maximal cliques. However, if the congruence

=
A

Figure 6.20: The Moon-Moser graphs Ms; and Ms 3.

relations are known, the time needed to determine the size of maximum clique is
polynomial with respect to the number of vertices.
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6.3 Isomorphism of coloured graphs

By a coloured graph we mean a triple G = (V, F, ¢), where (V| F) is a graph and
V — N is a function assigning to each vertex v a natural number ¢(v) (colour
of v). Let Gy = (W1, E1, 1) and Gy = (Va, Esy, ¢3) be coloured graphs. A mapping
Vi SN V3 is called a e-morphism if it is a graph morphism and preserves the
colours, i.e. if ¢; = ¢y 0 f.

There is no known polynomial-time algorithms for this problem. Though, it
is not proved that the problem is NP-complete. What we want to do is to find
equivalence relations p; and py on Vi and V; such that the problem of finding
an isomorphism between (G; and G5 reduces to find a suitable matching between
the equivalence classes (viewed as induced subgraphs) of p; and of py. If we have

found a mapping G1/p; S, (G3/p2 such that any p;-class Gy; is isomorphic to

the ps-class f(Gh-), the isomorphism G 1, (73 can also be built if we assume
that pq, ps are congruence relations and f is an isomorphism between G /p; and
G2/ p2-

However, finding such a pair of congruence relations may not be easy because
when choosing arbitrary pair of congruence relations it may not be possible to
find a suitable matching between the corresponding congruence classes. Thereby,
the way of choosing (p1,p2) should be canonical, i.e. should no depend on a
particular order of vertices etc. We show that a radical maps may be used for
that purpose.

Theorem 41 Let p be a complete invariant, i.e. p(Gy) = p(Gs) implies Gy =
Gly. Let Gy = (Vi, Ey,¢1) and Gy = (Va, Ey, ¢3) be coloured graphs, p; € Con Gy
and py € Con Gy be congruence relations. The isomorphity of coloured graphs

(Vi/p1, E1/p1, 1) and (Vaf pa, B2/ pa, 1) implies the isomorphity of G and Gs.

Proof.  Let Vi/p 4, Va/p2 be a c-isomorphism, i.e. u(H) = pu(f(H)) and
therefore H = f(H) for each pi-class H. Accordingly, there exists a mapping ¢
assigning to each pi-class H a c-isomorphism H #H) f(H). Let Vi ™5 V;i/p; and
| VAN Va/p2 be the natural projections. Define V; BRI V5 as follows:

f(2) = [6(m(2))](2).

It follows immediately from the definition that the following diagram has to be
commutative
¢ s G
~| I (6.1
G/ p1 — Ga/ pa-

f(y), we have f(mi(z)) 3 f(z) = f(y) € f(mi(y))

f is injective, because if f(z) =
= f(71)(y) keeping in mind the fact that the intersecting

and therefore f(7r1( ) f(
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equivalence classes coincide. As f is an isomorphism we have 7{(z) = 71(y) and
thus

[¢(m(2))](2) = [(m1(2))](y)

implying = y due to the fact that ¢(71(z)) is an isomorfism.
Let 2z’ be an arbitrary vertex in V3. As f and =, are onto, there exists

H € Vi/py such that f(H) = my(a'). Accordingly there exists an isomorphism
s ma(2'). As 2’ € my(a’) and ¢(H) is onto, there exists an x € H, such that

[o(H)|(z) =2a'. As H = =1(x),

f(2) = [6(m(2))](z) = [¢o(H)](z) = o'

showing that f is onto. It remains to prove the morphism condition. Let z,y €

Viand f(z) # f(y). T m(e) = m(y), we have oy € By & f(e)f(y) € Es
because ¢(71(x)) is a morphism. Otherwise, if 71(z) # 71(y) then # # y and

also f(m1(z)) # f(71(y)) because of the injectivity of f. From the commutativity
of the Diagram (6.1) it follows that mo(f(z)) # 72(f(y)). As 71,7 and f are

morphisms, we have

xye by, & 731($)771(’y) € bi/p
& f(m()
& ma(f(z)

& f(@)f(y) € B

showing that f is a morphism. For proving that f is colour-preserving let z € V;.

Thus ez(f(2)) = e2[[¢(71(2))](x)] = c1(x) because ¢(71(x)) is a c-morphism. O

The following theorem demonstrates the importance of the concept of radical
in determining the isomorphy of coloured graphs.

Theorem 42 Let p be a complete invariant and R be a radical map. Two
coloured graphs G = (Vi, E1,¢1) and Gy = (Va, B3, ¢3) are isomorphic if and only
i the coloured graphs (Vi /R(Gr), By JR(Gr), ) and (Vo/R(G2), BafR(Ga), ) are

isomorphic. 7

Proof. The if-part is a special case of Theorem 41. Therefore it is sufficient to
prove the only-if-part. Let Gy 7, (i3 be an isomorphism, G 5 Gy /R(GY),
Gy 2 Gy /R(Gy) be the natural projections.

If (z,y) € Ker 7y = R(G1) then using the properties of £ we get (f(z), f(y)) €
R(G2) = Kerwg, ie. (z,y) € Ker(my o f). Inversely, if (z,y) € Ker(wz o f)

“Here the notation E;/R(G1) means that if G} I, G1/R(G1) is a natural projection, then
(m1(2), m1(y)) € E1/R(G1) if and only if (z,y) € E;.
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(f7H(f (), f7H(f(y))) € R(G1) = Kermy. Therefore Kerm; = Ker(w, o f) and

thus there exists an isomorphism f making the following diagram commutative:

Gl —_— GQ

m 2

Gy /R(GY) T) G/ R(G2).

It remains to prove that f is colour-preserving. This follows from the assumption
that f is an isomorphism and therefore the restriction of f into the arbitrary
R(G1)-class is also an isomorphism. O

In order to determine whether the graphs (; and (G5 are isomorphic we should
find the corresponding radicals £(G1) and R(G2). If the corresponding factor
graphs have not identical number of vertices we can conclude by Theorem 42
that G; 2 Gy. Let G1/R(G1) = {G11,..., G} and Gy/R(Gy) = {Ga, ..., Ga}.
Now we recursively compare the pairs (Gy;, Go;) using (there are ¢* of them)
and assign colours to the vertices of G1/R(G1) and Gy/R(G2) in such a way
that Gy; and G3; have the same colours if and only it Gy; = G3;. By Theo-
rem 42 it remains to compare the factor graphs (V1 /R(G1), F1/R(G4), ) and
(V2/R(G2), E2/R(G2), ).

Using such a technique significantly reduces the the time needed for the deter-
mination of the isomorphy of two coloured graphs in the case if the graphs are not
R-semisimple. If there exists a polynomial-time algorithm capable to determine
the isomorphy of simple graphs, there exist also a polynomial-time algoritm for
the general case.
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The name of this short chapter may as well be "Epilogue”. We show that the
structure theory developed in previous chapters of the thesis can be significantly
simplified. The graph morphisms and congruence relations presented in the thesis
seem to have similar properties with the morphisms and congruences of algebraic
structures. Though, we did not use any algebraic operations. Only when the the-
sis was almost written, the author found a suitable binary operation on the vertex
set "responsible” for such a similarity. Moreover, it turned out that the idea of
representing a graph as a groupoid was already used by Czhech mathematicians
([14],[20],33]).

The new notion of a graph morphism introduced in the thesis has indeed an
algebraic nature. For each graph GG = (V, E') define a binary operation V x V —
V' as follows:

b w = { w, ifvw e K (7.1)

v, ifvw ¢ FE.
b
[ ]
a/ \c

Figure 7.21: A graph and the corresponding groupoid.

The corresponding groupoid (G, -) is quasitrivial, i.e. vw € {v,w}, Vv, w. For
every quasitrivial groupoid (G, -) we can define a binary relation E such that the
condition (7.1) holds. Indeed, the relation £ can be defined as £ = {(v,w) | v #
w,v - w = w}. Quasitrivial groupoids and their relations with graphs have been

studied by Czhech mathematicians ([14],[20],[33]).

Theorem 43 A mapping f between the vertex sets of two graphs is a graph
morphism if and only if it is a morphism of the corresponding groupoids, i.e. iff

flv-w) = f(v) - fw).

The proof is straightforward and has been omitted.

Accordingly, the category of all graphs is isomorphic to the category of all
quasitrivial groupoids and the graphs can be viewed as algebras with a single
binary operation. We can use all the theorems about these algebras.

Several classes of graphs can be characterized by identities. For example, an
edgeless [complete] graph can be defined by the identity zy = = [zy = y], a partial



92

ordering by the identities zy - x = 2y and 2y - (x - yz) = x - yz, a linear graph by
the identities zy = yx and = -yz = xy- 2z, a graph without 3-cycles by the identity

{[(zz-y2)(zy - zy)](yz - y2) (22 - y2)|}(xz - 2y) =
{(zz - y2){[(zy - zy)(yz - z2)](22 - y2) } (22 - 2y).

Identities in graphs are studied in [14], associative identities in graph-algebras in
[37].

The author should acknowledge that if this equivalence of the categories was
discovered sooner, a large fraction of the claims presented in the thesis became
direct corollaries of the standard results in universal algebra.



For studying decompositions of graphs we present a new structure theory essence
of which is algebraic in the sense that it is based solely on the algebraic properties
of the congruence lattice. The crucial point of the new structure theory is the
notion of a G-radical of a graph defined as the intersection of all co-atoms in its
congruence lattice. The main results of the thesis concern in the following:

e We give a characterization of the J-semisimple graphs (Theorem 20, page
53) and of the corresponding congruence lattices (Corollary 2, page 56). We
point out that the recursive partition of a graph using J-radical coincides
with the modular decomposition of this graph.

o We give a characterization of the finite graphs with the congruence lattice
satisfying a given set of lattice identities. We prove that if G is a finite
graph and V is a lattice variety then Con(G) € V if and only if the modular
decomposition of G does not contain graphs O, and K, with n(V) < n,
where 7(V) is the largest natural number & such that IT; € V (Corallary 3,
page 68).

o We give a classification of the lattices representable as congruence lattices of
finite graphs (Corollary 1, page 75, Corollary 2, page 75). This is gained by
introducing a new lattice operation — the lexicographic product of lattices
— such that the mapping Con behaves almost like a morphism, i.e. under
certain conditions it maps the generalized lexicographic product of graphs
into the lexicographic product of the corresponding congruence lattices.
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Graafiks nimetatakse hulkade paari G = (V| F), kus E on antirefleksiivne (mitte
tingimata stimmeetriline) binaarne relatsioon hulgal V. Hulkade V' ja E elemente
nimetatakse vastavalt tippudeks ja kaarteks. Morphismiks graafide Gy = (V1, E1)

ja Gy = (Va, Ey) vahel nimetatakse kujutust V4 RN V,, nii et

fv) # f(w) = [vw € By & f(v)f(w) € Ey] (7.2)

mistahes tippude v, w € V] korral. Seesugust tuiupi morfismidel on pikk ajalugu.
Nad kerkisid esmakordselt esile Sabidussi [4] toodes, kus on defineeritud ka nn.
tuldistatud leksikograafilise korrutise operatsioon, mis tldistab Harary [3] poolt
defineeritud nn. kompositsiooni operatsiooni. Neid morfisme on hiljem taasavas-
tatud paljude teadlaste poolt (Hemminger [11], Spinrad [16], Mohring [18]).
Pohiline inspiratsiooniallikas oli graafide transitiivse suunamise tilesannet lahen-
davate kiirete algoritmide valja t66tamine ja arendamine (Ghouila-Houri [6],
Gilmore ja Hoffman [7], Pnueli, Lempel ja Even [12], Spinrad [19]. Selgus, et
transitiivse suunamise jaoks loodud graafide dekompositsioonimeetod to6tab su-
ureparaselt ka paljude teiste kombinatoorikaprobleemide korral, muuhulgas ka
paljude NP-taielike probleemide korral, nagu naiteks suurima kliki leidmine ja
kahe varvitud graafi isomorfsuse tuvastamine (Osa VI). Samas aga ei ole see
meetod kasutatav juhul, kui uuritav graaf on lihtne, st tal pole mittetriviaalseid
lahutusi. Onnetuseks on lihtsus peaaegu koigi 1oplike graafide omadus nagu seda
on toestatud Osas II. To6des [24],[25] ja [26] on Ehrenfeucht ja Rozenberg esi-
tanud struktuuriteooria graafidest tildisematele objektidele, nn 2-struktuuridele.
Kaesoleva dissertatsiooni pohieesmark on uurida, mida on voimalik teha puhtal-
gebraliste meetoditega graafide struktuuri uurimisel.

Osas I on toodud t66 sisust arusaamiseks vajalikud moisted, nende definit-
sioonid ja tahistused ning ara toodud ka olulisemad tulemused, millel antud t66s
on oluline roll.

Osas II tuuakse sisse uus graafide morfismi moiste ja toestatakse morfismide
ja kongruentside moningad omadused.

Osas III arutletakse graafi kongruentside vore pohiomaduste ile. Graafide
jaoks on defineeritud tks algebralise struktuuriteooria pohimoisteid — radikaal.
On antud koigi poollihtsate graafide kirjeldus nn. $-radikaali korral, mis defi-
neeritakse kui kongruentside vore koigi ko-aatomite alumine raja.

95



96

Osas IV antakse taielik kirjeldus neile loplikele graafidele, mille kongruentside
vores kehtib fikseeritud voresamasus. Naiteks kongruents-distributiivsed (vast.
modulaarsed) graafid kirjelduvad kui graafid, mille tikski komponent ega tema
duaalne uldistatud leksikograafiliseks korrutiseks lahutuses ei ole rohkem kui kahe
(vast. kolme) sidususkomponendiga.

Osas V kirjeldatakse vorede teatud kompositsioonimeetodit, mis defineeri-
takse kui vorede leksikograafiline korrutis. Seda tanu tapsele vastavusele graafide
uldistatud leksikograafilise korrutise kongruentside vorega. Voime end poeetilise-
malt valjendades itelda, et teatud tingimustel sailitab operaator Con leksiko-
graafilise korrutise operatsiooni. See fakt annab meile loplike graafide kongru-
entside vorede taieliku klassifikatsiooni.

Osas VI naidatakse, kuidas algebralise dekompositsioonimeetodi rakendamine
vahendab oluliselt graafidega seotud NP-raskete kombinatoorikatilesannete lahen-
damise keerukust.

Osas VII naidatakse, et uut tuipi morfismidel on algebraline loomus, st
toestatakse, et graafide kategooria on ekvivalentne teatud omadustega rihmoidide
kategooriga.

Too pohitulemused:

e Antakse kirjeldus S-poollihtsatele graafidele (Teoreem 20, lk. 53) ja vasta-
vatele kongruentside voredele (Jareldus 2, k. 56). Leitakse, et graafi rekur-
sitvne tikeldamine $-radikaali abil langeb kokku tema modulaardekom-
positsiooniga.

o Antakse kirjeldus loplikele graafidele, mille kongruentside vored rahuldavad
etteantud hulka voresamasusi. Toestatakse, et kui G on loplik graaf ja V
on mingi vorede muutkond, siis Con(G) € V parajasti siis, kui graafi ¢
modulaardekompositsioon ei sisalda graafe O, ja K, nii et n(V) < n, kus
n(V) on suurim naturaalarv k, mille korral IT, € V (Jareldus 3, lk. 68).

o Antakse klassifikatsioon koigile sellistele voredele, mis on esiatavad lopliku
graafi koigi kongruentside vorena. (Jareldus 1, 1k. 75, Jareldus 2, lk. 75).
See saavutatakse uue voreoperatsiooni — vorede leksikograafilise korrutise —
sissetoomisega, nii et kujutus Con kaitub ”peaaegu” morfismina, st. teatud
tingimustel ta kujutab graafide tldistatud leksikograafilise korrutise vasta-
vate kongruentside vorede leksikograafiliseks korrutiseks.
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