
Introduction to SplitKey Foundations

Technical document
Version 1.0.1
June 3, 2020
10 pages

Contents

Contents 2

1 Introduction 2

1.1 Purpose . 3

1.2 Participating Actors . 3

1.3 Cryptography Foundations . 3

1.4 References . 4

2 Key Generation Phase 5

2.1 A static overview of the involved elements . 5

2.2 Key generation: a dynamic notation . 6

2.2.1 Key Generation . 6

2.2.2 Splitting the Private Key . 7

2.2.3 Certi�cation . 7

2.2.4 Erasure of remnants . 8

3 Signing phase 8

3.1 Preparing the input . 8

3.2 Signing a message . 9

3.3 Creation of subsignatures . 9

3.3.1 Client part of the Split . 9

3.3.2 Server part of the Split . 9

3.4 Compilation of the signature from Splits . 9

3.5 Forming the Full, Final Signature . 10
3.6 Veri�cation of the Full Signature . 10
3.7 Extra items . 10
3.8 Summary . 10

1 Introduction

Document explains the mathematical formulas and principles behind the SplitKey technology. The
document includes information security notions, intended to assist the security evaluation of the
SplitKey Platform.

Introduction to SplitKey Foundations
June 3, 2020

1.0.1
2 / 10

1.1 Purpose

SplitKey is a technology bringing true cryptographic authentication and signing to the commodity
platforms of smart devices (iOS, Android), while not scarifying the security levels characteristic
to specialised hardware platforms, such as hardware smart-cards or hardware security modules.
SplitKey can be thought of as a mixed token solution for authentication and signing, combining
the bene�ts of both hardware cryptographic token (security wise) and soft token (regarding the
convenience).

The document is describing SplitKey in action. The internals of the SplitKey technology are
explained in �ne detail. Some basic knowledge of information security, legislation and cryptography
is advised. The paper also addresses some security issues that SplitKey is able to solve. The
mathematical apparatus behind SplitKey has been originally noted in [1].

1.2 Participating Actors

There are two participating Actors. The �rst one is the Client who initiates operations using a
commodity Smart Device. According to the laws and standards, the Client is the owner and a legal
sole possessor of the full, �nal key. In case of SplitKey, the Client does not have to blindly trust
the infrastructure, but is in real control over his key.

The other Actor is the infrastructure of the Service Provider. For clarity reasons, the current
paper abstracts from the actual complexity of systems available at the Service side and refers these
jointly just as the Server.

The important role of the Server side is to enforce high level technologies like HSM and industry
standard procedures to support the Client in exercising his sole control over his private key. It is
the task for the Server side to establish the assurance, trust and auditability due to the inability
of a commodity Smart Device to achieve these goals in isolation.

1.3 Cryptography Foundations

SplitKey could be seen as a superstructure to the standard RSA algorithm [2]. The full �nal
(private) key d is an implied compound key of multi-prime nature. However, according to an
important design goal of the SplitKey, constituents for the virtual key d are never explicitly gathered
together. The full private key d currently has the length of 6Kibit (6144 bit).

The virtual private key d can (for clarity reasons) be depicted as having a vertical cut at the
splitting point. In reality, this key is built bottom up � its half-keys are generated by distinct
Parties.

The �rst half-key d1 is to be generated by the Client while the second half-key d2 is to be
generated by the Server, as illustrated on Figure 1. Both keys are of 3Kibit (3072 bit) length.

Figure 1. The �rst split, actually a compound

Instead of ever putting these two half-keys together, the meaningful key operations are
conducted in separation � i.e. sequentially with both half-keys. Due to the multi-prime RSA
math, the result is an equivalent to the operations with the full �nal key.

SplitKey technology yet provides a second, technologically more complex split applied to the
half-key d1. This is a real split based on addition modulo the Euler's totient function. The second

Introduction to SplitKey Foundations
June 3, 2020

1.0.1
3 / 10

split could be better described as a horisontal one, see Figure 2, due to the fact that resulting
keys d ′1 and d

′′
1 both are of 3Kibit size.

Figure 2. The second split

Summarizing � the full private key d is virtual and as depicted on Figure 3, can be thought
as of a compound of parts d ′1, d

′′
1 and d2.

Figure 3. Both splits with storage locations marked

1.4 References

[1] A. Buldas, A. Kalu, P. Laud, and M. Oruaas, �Server-supported RSA signatures for mobile
devices�, in Computer Security � ESORICS 2017: 22nd European Symposium on Research

in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part I, S. N.
Foley, D. Gollmann, and E. Snekkenes, Eds. Cham: Springer International Publishing, 2017,
pp. 315�333, isbn: 978-3-319-66402-6. [Online]. Available: https://doi.org/10.1007/978-3-
319-66402-6_19 (visited on 09/03/2018).

[2] PKCS #1: RSA Cryptography Speci�cations Version 2.2, RFC 8017 (Informational), IETF,
Nov. 2016. [Online]. Available: https://tools.ietf.org/html/rfc8017.

[3] Common Criteria for Information Technology Security Evaluation. Part 1: Introduction and

general model, Apr. 2017. [Online]. Available: https://www.commoncriteriaportal.org/files/
ccfiles/CCPART1V3.1R5.pdf.

[4] Common Criteria for Information Technology Security Evaluation. Part 2: Functional security

components, Apr. 2017. [Online]. Available: https://www.commoncriteriaportal.org/files/
ccfiles/CCPART2V3.1R5.pdf.

[5] Common Criteria for Information Technology Security Evaluation. Part 3: Assurance security

components, Apr. 2017. [Online]. Available: https://www.commoncriteriaportal.org/files/
ccfiles/CCPART3V3.1R5.pdf.

[6] Trustworthy systems supporting server signing. part 1: General system rrequirements, draft
prEN 419 241-1:2017, version 0.15, Oct. 2017.

[7] Trustworthy systems supporting server signing. part 2: Protection pro�le for QSCD for server

signing, draft prEN 419 241-2:2017, version 0.15, Oct. 2017.

Introduction to SplitKey Foundations
June 3, 2020

1.0.1
4 / 10

https://doi.org/10.1007/978-3-319-66402-6_19
https://doi.org/10.1007/978-3-319-66402-6_19
https://tools.ietf.org/html/rfc8017
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf

[8] Regulation (EU) No 910/2014 of the European Parliament and of the Council of 23 July

2014 on electronic identi�cation and trust services for electronic transactions in the internal

market and repealing Directive 1999/93/EC, Aug. 2014. [Online]. Available: http ://eur -
lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2014.257.01.0073.01.ENG.

2 Key Generation Phase

A key generation procedure will always be initiated by the Client and never by the infrastructure.
The Client shall be the future owner and sole legal possessor of the full, virtual �nal key.

2.1 A static overview of the involved elements

In this section, the meaningful objects are enumerated and the algorithm used to split the (private)
half-key d1 is explained, which obviously is the most interesting object throughout the SplitKey
framework.

The e�ective (or combined, or �nal, or full) RSA private key of the Client shall be d . As a
paradox, that key never participates in cryptographic operations, neither does it exist in an evident
form, thus it is not possible for an attacker to directly obtain the key d . The functions with d are
supported indirectly, via mathematical operations.

The Client part d1 of the �nal RSA key is generated at the Client side. Server part of the key
d2 is generated at the infrastructure side. The key d2 stays at the Server side, thus it cannot be
obtained by attacking the Client side. As the result, to obtain the full private key, attackers would
be expected to compromise both the Client and Server sides, which is a highly unlikely event.

Along with the private keys, public keys are also generated � according to RSA requirements.
The �nal (full, compound) public key of the client as later referenced by the Client Certi�cate,
shall be n .

The notion of public keys is similar - the Server part of the public key is referenced as n2 and
it is created by the infrastructure part. The Client part of the (�nal, public) key n is called n1 and
it is prepared by the client.

Admitting the pre-de�ned exponent e is important for the underlying mathematics, it is not
actually transferred during the actual key operations. With that simpli�cation, the full public key
n = p · q is respectively comprised from two half-keys n1 = p1 · q1 and n2 = p2 · q2. The full public
key appears as the multiplication of four primes: n = p1 · q1 · p2 · q2.

A distinctive property of SplitKey is the transformation chosen to yet further split the Client
part of the Client private key, following its initial generation. With that purpose, some extra
operations are applied on the private key d1 (albeit not on its public counterpart n1).

The reason to split the key d1 is to divide the key between two parties so that d ′1 will be stored
at the Client side and d ′′1 at the Server side. The particle d ′1 is stored within a relatively hostile
environment of the Client smart device, it must be virtually indistinguishable from a random string.
SplitKey makes use of additive sharing for both purposes.

Introduction to SplitKey Foundations
June 3, 2020

1.0.1
5 / 10

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2014.257.01.0073.01.ENG
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2014.257.01.0073.01.ENG

Lets use a simpli�ed mathematical notation1, marking the split d1 = d
′
1 ⊕ d ′′1 . According to

that notion, the key d ′1 can be calculated as d ′1 = d1 	 d ′′1 .
First, a random value of a pre-de�ned size (3Kibit) is requested from a random number

generator, to be further used as d ′′1 . The obtained bit string obviously possesses the random
qualities the private key d1 is lacking. The task solved by the operation of additive sharing, is dual:
to split the newly generated key d1 into two pieces while imprinting randomness on a newly formed
particle d ′1. The chosen way of splitting will result in two e�ectively random bit strings which, if
combined, still retain certain mathematical properties in respect to RSA.

At the Client side, extra measures are undertaken to conceal the value of d ′1 from the attackers
so it will be stored encrypted by AES. Consequently, a PIN will be later needed to open that key.

The d ′′1 part is to be sent to the Server and stored in HSM. The modulo sum d ′1 ⊕ d ′′1 = d1
is true while both addends remain e�ectively random and are stored at distinct parties, thus the
attacker's chances are extremely complicated. To compromise the private half-key d1 demands
compromising both sides, which could be considered extremely unlikely due to the mitigation e�orts
provisioned by design, built in and audited at the infrastructure party.

Last but not least, a document or transaction to be signed should be determined prior to
signing. Due to the known limitations of the RSA cryptosystem (speed, requirements), the actual
input for the signature operation will be the message m obtained by �rst by hashing the document
D (e.g. by applying a function outputting a 256 bit sequence) and then padding the hash value to
be commensurate with the 6Kibit key intended to sign with.

This was an overview of cryptographic elements in static, as well as the explanation of their
purpose. Subsequently, a dynamic overview will be conducted explaining the basic operations with
the elements.

2.2 Key generation: a dynamic notation

For legal implementation, the keys do not exist in isolation but are used together with the personal
certi�cates. According to the standards, a certi�cate is formed from the public key of the owner
and some extra data, by signing the outcome cryptographically by someone else (normally a CA).

Generating a new certi�cate includes several phases, the actual generation of the keys, splitting
those according to the SplitKey technology requirements, and the �nal operation of certi�cation
resulting in the fresh public key published at a CA. The last operation is a technological one �
erasing the sensitive cryptography material used during the key generation but not needed after
that.

A disclaimer: cryptographic operations are described below in an order easy to understand
which is not necessarily the exact sequence the software is internally using for the purpose.

2.2.1 Key Generation

Generating new keys is an operation of paramount importance � because a new identity is created.
Thus, the Client is expected to authenticate prior to each attempt. Here is the work�ow:

• The Client initiates the key-generation via GUI.

• A standard RSA key generation operation is launched to obtain a public key n1 together with
a paired secret key d1, both of 3Kibit size;

• The Client will transfer the public part n1 of the newly generated key to the Server.

1The actual cryptographic operations ⊕, 	 are the addition and subtraction modulo the Euler’s totient function
ϕ = (p1 − 1)(q1 − 1)

Introduction to SplitKey Foundations
June 3, 2020

1.0.1
6 / 10

• In parallel to that, the Server launches an independent RSA key generation task to obtain
the keypair n2 and d2, both of 3Kibit size.

At the Server side, the keys are stored within an HSM.

2.2.2 Splitting the Private Key

• The Client will recalculate d1 as two equivalent constituents d ′1 and d ′′1 according to the
operation of additive sharing (see section 2.1 A static overview of the involved elements);

• the constituent d ′1 will be stored by the Client at its �le system (encrypted, more about that
later);

• the constituent d ′′1 will be transferred from the Client to the Server, via a secure channel;

• the transferred constituent d ′′1 will be marked for a later erasure;

• the initial half-key d1 is marked for a later erasure.

The result of the splitting will manifest a mathematical meaning later, during the signing
operations. Until then, the constituents d ′1 and d

′′
1 look like random bit strings.

2.2.3 Certification

To onboard the newly generated key pair into the trusted system, the key pair �rst has to be bind
to the user's identity. The outcome from the certi�cation phase is a new identity � a certi�cate
within the Service Provider's system. A suitable graphic meme for a key pair with the certi�cation
seal applied is presented on Figure 4.

Figure 4. The arrangement of a compound key pair depicted as a domino piece
with a certifying seal on top

The procedure runs as a continuation to the key generation operation. This is the procedure:

• The server prepares parts needed for the certi�cation, such as the public subkey n1 obtained
from the Client and its own subkey n2.

• Server forms a signature activation request. Based on the identity of the authenticated
person (obtained via other methods), a CSR (Certi�cate Signing Request) is initiated,
containing:

� a (possibly quali�ed) identity of the person as advised/derived by an external
Registration Authority or by other methods;

� the compound public key n = n1 · n2;
� a timestamp (satisfying the legislation);

� de�nition of the certi�cation policy;

� URL linking the CRL;

• Provided all the formal requirements were honoured, the server shall contact the CA and
submit CSR and apply for certi�cate.

Introduction to SplitKey Foundations
June 3, 2020

1.0.1
7 / 10

• The expected result is a fresh personal certi�cate (of a new identity) returned from CA and
securely stored by the Server.

• The Server produces relevant audit logs about an event.

2.2.4 Erasure of remnants

On successful ending of the key generation operation:

• The Client will securely wipe the primes p1 and q1 ;

• The Client will securely wipe the key d1 meant to be never directly used;

• The Client will securely wipe the key d ′′1 previously transmitted to the Server. This is because
only the Server should be in control of that part.

If the certi�cation request did not reach to the intended outcome, then all the generated
cryptographic material becomes worthless and is to be destroyed � advisably in a secure fashion.

3 Signing phase

As demonstrated above, the full �nal private key is now split between the Client and the assisting
infrastructure. The usefulness of the SplitKey manifests itself in a way that both sides will sign
the message m in a full separation from each other and then clever mathematics is used to form
a full signature out of the partial results.

Taking into account that the Server can neither initiate the signing operation nor �nish it due
to the lacking d ′1 particle, the situation could be reduced to the Client in sole possession of its

private key, which is an important goal from the viepoint of [3]�[8] while the infrastructure is only
assisting the Client with the procedure quality otherwise unachievable by mobile devices.

3.1 Preparing the input

Relying Party (RP) in legal agreement with the Service Provider, can o�er documents or
transactions to be signed by the Client. RP is the one in possession of the original
document/transaction.

The following will take place: the RP in possession of the original document, will calculate the
hash (message digest) H of it and will pass that value to the Server (it takes place out-of-band of
the Client-Server communication channel). The Server will subsequently pad the digest H forming
a message m to be signed.

• The RP shall calculate the hash (message digest) H from the attempted transaction and
pass it to the Server.

• The Server will pad the digest H forming the message m to be signed. The size of the
padded message is commensurable with the full 6Kibit key size (a requirement derived from
RSA internals).

• The Server will communicate the padded message m to the Client.

Introduction to SplitKey Foundations
June 3, 2020

1.0.1
8 / 10

3.2 Signing a message

The current procedure assumes the document or transaction to be signed is originating from an
RP � relying party, e.g. a bank or service portal. Technically a variation is possible with the
document to be signed located e.g. at the Client �le system.

3.3 Creation of subsignatures

The Client and Server will independently proceed with the calculations of the respective signatures.
Either is only able to calculate a partial signature based on the subkeys d ′1 and d

′′
1 in their respective

possession.

3.3.1 Client part of the Split

• The Client attempts to decrypt the key d ′1 � a PIN is needed for this operation. The beauty
of the mathematics ensures the AES encrypted value will be opened with any PIN, including
the wrong ones, thus the attacker has no feedback on the success.

• The Client takes the message m to be signed and calculates the partial signature according
to the expression md

′
1 mod n1 (which is a standard RSA signature creation formula). If the

PIN was incorrect, then the key d ′1 was incorrect, too. If so, then the subsequent operations
are not meaningful, albeit they could be technically considered successful.

3.3.2 Server part of the Split

• The Server obtains the respective subkey d ′′1 securely stored at the HSM and only usable at
the client's request. Any use of that key is strictly logged and audited.

• The Server takes the message m to be signed and calculates the second partial signature
according to the expression md

′′
1 mod n1 .

3.4 Compilation of the signature from Splits

The mathematics behind it, how seemingly random bit strings form a complete signature, is:{
md

′
1 mod n1

md
′′
1 mod n1

⇔ md ′1 ·md ′′1 mod n1 = md
′
1+d

′′
1 mod n1 = m

d1 mod n1.

As described above, the mathematics on the Client side works transparently regarding the
PIN value. An attacker on the Client side has no means to check the correctness of the formed
subsignature. However, the server, now possessing both the subsignatures, is able to form a half
signature and apply the main equation of RSA(

md1
)e
mod n1 = m.

This way, the Server is now able to indirectly verify that the Client PIN was correct and
consequently to prove that the Client was in sole control of its secret key, as requested by [6] and
[7].

Introduction to SplitKey Foundations
June 3, 2020

1.0.1
9 / 10

3.5 Forming the Full, Final Signature

Only if the previous check was successful (and the sole control of the private key was explicitly
demonstrated), the Server considers it reasonable to calculate another half of the full signature.
The second half of the signature could be regarded as the server's consent and assurance about
it, that the derivation of the �rst half-signature was produced according to the full ruleset, any
applicable controls and standards. The actual formula used to calculate the second half-signature,
is:

md2 mod n2

The output of that operation is considered to be always correct, thus extra checks do not apply
� the second half-signature is needed for nominal reasons to form a full signature. The operation
for compiling the full signature is:

• The server applies the Chinese reminder theorem to the concatenated half-signatures
md1 mod n1 and m

d2 mod n2 to form a full signature md mod n.

It is worth remembering the full private key d never existed and was never stored. This is a
signi�cant fact due to the necessity to prove the sole control over the private key, which can now
be fully attributed to the Client. Vice versa, storing the full key at the server would compromise
the requirement of sole control.

3.6 Verification of the Full Signature

The operation of public veri�cation of the signature is possible because the public key n is published
as a part of the personal certi�cate available via PKI. Thereby the operation is accessible not only
to the infrastructure Server but to any party having access to the signed document and the public
key n of the Client.

3.7 Extra items

Two important extensions are still to be kept in mind:

• In contemporary systems, there is a tendency to generate a set of two key pairs � one for
authentication purposes, another strictly for signature operations. This e�ectively doubles
the extent of complexity.

• The legal digital signature is normally not the same as technical signature generated with
cryptography. To obtain the legal strength according to reg. (EU) 910/2014 [8] provisions,
a timestamp has to be present and an approved relation demonstrated with a legally accepted
CA.

3.8 Summary

The mandatory operations involving SplitKey were extensively discussed above to the extent
necessary to understand the speci�c properties of the SplitKey technology. Certain generic security
threats were discussed to demonstrate their relation to the SplitKey system.

Introduction to SplitKey Foundations
June 3, 2020

1.0.1
10 / 10

	Contents
	Introduction
	Purpose
	Participating Actors
	Cryptography Foundations
	References

	Key Generation Phase
	A static overview of the involved elements
	Key generation: a dynamic notation
	Key Generation
	Splitting the Private Key
	Certification
	Erasure of remnants

	Signing phase
	Preparing the input
	Signing a message
	Creation of subsignatures
	Client part of the Split
	Server part of the Split

	Compilation of the signature from Splits
	Forming the Full, Final Signature
	Verification of the Full Signature
	Extra items
	Summary

